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> formulated as transposed SSNMF model, i.e.,

. _ p) . 2
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[H., Needell, Rebrova, Vendrow 2021]
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xl(l) Xr(l)

nonnegative CANDECOMP/PARAFAC (CP) decomposition (NCPD)

[Carroll, Chang 1970] [Harshman 1970]
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» Application: COVIDx archive

Left: ‘viral pneumonia’ topic; Right: ‘Normal’ topic.
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» Hierarchical NMF

Model: Sequentially factorize
X ~ A0S0 50 x AWM s x AR SR GE-1) o AL) (L),

(e-1)

> k©): supertopics collecting k subtopics

> error propagates through layers

[Cichocki, Zdunek 2006]
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N
EQWDY) =" F(y(xn, {WD}), x5, 1)
n=1
Training:
> forward
. propagation:
Input Hidden Output 20 = o(WWx)
layer layer layer !

20 — o(W@z),
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> back propagation:
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» Neural NMF

Goal: Develop forward and back propagation algorithms for hNMF.

[Gao, H., Molitor, Needell, Sadovnik, Will, Zhang 2019]
Related work: [Flenner, Hunter 2018], [Trigeorgis, Bousmalis, Zafeiriou, Schuller 2016], [Le Roux, Hershey, Weninger 2015], [Sun,

Nasrabadi, Tran 2017] [21/26]
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Goal: Develop forward and back propagation algorithms for hNMF.
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> forward propagation:
® O O i
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q(-, A®)  g(-, AD) S — g(S(L-1), A(L))

> back propagation: update
{A} with VE({A(})
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[Vendrow, H., Needell 2021]
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Neural NCPD model can again be formulated and trained in

neural network framework

[Vendrow, H., Needell 2021]
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> they can be trained by multiplicative updates
> allow for use of side supervision information and expert guidance

> hNMF model can be implemented as a feed-forward neural network

> Neural NMF and Neural NCPD can decrease error propagation

> elucidate hierarchical relationships between learned topics and
decrease dependence upon hyperparameters
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