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» Dataset similarity
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» Point Cloud Distances

Chamfer’s distance:
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Chamfer’s distance:

dcham(Xl, X2) — ﬁ ExeXl miny€X2 Hy - X||%+‘712| ZyEXQ minX€X1 ||X _ y“%

We seek a distance that is:
+ More robust to outliers.
+ Utilizes the structure of data.

 Helps illustrate how the data is similar or dissimilar.
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» Nonnegative Matrix Factorization (NMF)

Model: Given nonnegative data X, compute nonnegative A and S of
lower rank so that
X ~ AS.

r X np
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» Nonnegative Matrix Factorization (NMF)

Q

X A

r X np

ny X np ng Xr

> Popularized by [Lee & Seung 1999]
> Employed for dimensionality-reduction and topic modeling
> Often formulated as

min [X — AS||%Z or min D(X||AS).1

nyXr rXxny nyXr rXxny
AcRY " SERTY AcRY " SERTY

1. L Aj
information divergence D(A|[|B) = Ei,j (A,-j log g=- — Ajj + B,-j)
4
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» Joint NMF

Model: Jointly factorize two nonnegative matrices X; and X, sharing
one factor matrix between the factorizations.

Example: Semi-supervised NMF

S
X ~ A
r X np
n X np m Xr
Y ~ B S
k X no kxr
r X np

Often applied in classification!

ILee, H., Yoo, J., and Choi, S. " Semi-supervised nonnegative matrix factorization.”
IEEE Signal Processing Letters 17.1 (2009): 4-7.
H., et al. " Semi-supervised Nonnegative Matrix Factorization for Document
Classification.” 2021 55th Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2021.
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» Joint NMF

Model: Jointly factorize two nonnegative matrices X; and X, sharing
one factor matrix between the factorizations.

Example: Joint NMF/Guided NMF

S: S

Q
>

X1 Xz

Intuition: many columns of A used in representing Xj and
X, indicates dataset similarity.

LKim, H., et al. "Simultaneous discovery of common and discriminative topics via
joint nonnegative matrix factorization.” Proc. ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining. 2015.

Vendrow, J., H., et al. "On a guided nonnegative matrix factorization.” |IEEE Int.

Conf. Acoust. Speech Sig. Process. (ICASSP), 2021. s
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representation of data
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» Swimmer Image Dataset

Swimmer Images

Donoho, D., and Stodden, V. "When does non-negative matrix factorization give
a correct decomposition into parts?.” NeurlPS (2003).
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Basis vectors learned by j]NMF on Swimmer
dataset X1, X1 + N where N is uniform noise.
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AR

Basis vectors learned by j]NMF on Swimmer
dataset X1, X1 + N where N is uniform noise.

Swimmer Images

p = [0.063, —0.901,0.076, 0.065, 0.069,
0.058,0.058,0.069, 0.079, 0.079]

IDonoho, D., and Stodden, V. "When does non-negative matrix factorization give
a correct decomposition into parts?.” NeurlPS (2003).
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» Swimmer Image Dataset

Swimmer and
Inverse Swimmer:

i
N

p =[—0.999, 1.000, 0.010, —0.017,0.003,
—0.004, 0.015, 0.004, —0.001, —0.000]
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» 20 Newsgroups Dataset

alt.atheism
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jNMF Distance
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» Conclusions

> JNMF provides information about dataset similarity and dissimilarity

S: S

R
>

X Xo

> we can aggregate this information using samples from the empirical
distribution function to form a vector indicating which dataset
learned basis vectors represent, p

> the information can be further aggregated to yield a distance,
d(Xe, %) = [1Bllx

> initial experiments are promising
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