
Motivation Introduction Our Method and Distance Experiments Conclusions

An Interpretable Joint Nonnegative Matrix
Factorization-Based Point Cloud Distance
Measure

by Jamie Haddock
(Harvey Mudd College, Department of Mathematics)

on March 23, 2023,
Conference on Information Sciences and Systems (CISS)

supported by NSF DMS #2211318

joint with Hannah Friedman, Amani R. Maina-Kilaas, Julianna Schalkwyk, and
Hina Ahmed (graduating Harvey Mudd College and Pitzer College seniors)

[1/19]



Motivation Introduction Our Method and Distance Experiments Conclusions

Motivation

[2/19]



Motivation Introduction Our Method and Distance Experiments Conclusions

» Dataset similarity

Understanding the similarities and differences between

datasets arises in many contexts: e.g., transfer

learning, plagiarism/manipulation detection, and data

denoising.
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» Point Cloud Distances

Chamfer’s distance:

dcham(X1,X2) = 1
|X1|
∑

x∈X1
miny∈X2‖y− x‖2

2+ 1
|X2|
∑

y∈X2
minx∈X1‖x− y‖2

2

We seek a distance that is:

∗ More robust to outliers.

∗ Utilizes the structure of data.

∗ Helps illustrate how the data is similar or dissimilar.
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» Nonnegative Matrix Factorization (NMF)

Model: Given nonnegative data X, compute nonnegative A and S of
lower rank so that

X ≈ AS.

X A
S

Y B S

≈

≈

n1 × n2 n1 × r

r × n2

k × n2 k × r
r × n2

. Popularized by [Lee & Seung 1999]

. Employed for dimensionality-reduction and topic modeling

. Often formulated as

min
A∈Rn1×r

≥0
,S∈Rr×n2

≥0

‖X− AS‖2
F or min

A∈Rn1×r

≥0
,S∈Rr×n2

≥0

D(X‖AS).1
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1
information divergence D(A‖B) =

∑
i,j

(
Aij log

Aij
Bij
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Model: Jointly factorize two nonnegative matrices X1 and X2, sharing
one factor matrix between the factorizations.
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» Joint NMF
Model: Jointly factorize two nonnegative matrices X1 and X2, sharing
one factor matrix between the factorizations.

Example: Semi-supervised NMF

X A
S

Y B S

≈

≈

n1 × n2 n1 × r

r × n2

k × n2 k × r
r × n2

Often applied in classification!

1Lee, H., Yoo, J., and Choi, S. ”Semi-supervised nonnegative matrix factorization.”
IEEE Signal Processing Letters 17.1 (2009): 4-7.
H., et al. ”Semi-supervised Nonnegative Matrix Factorization for Document
Classification.” 2021 55th Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2021.
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» Joint NMF
Model: Jointly factorize two nonnegative matrices X1 and X2, sharing
one factor matrix between the factorizations.

Example: Joint NMF/Guided NMF

X2
A

S2

≈X1

S1

Intuition: many columns of A used in representing X1 and

X2 indicates dataset similarity.

1Kim, H., et al. ”Simultaneous discovery of common and discriminative topics via
joint nonnegative matrix factorization.” Proc. ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining. 2015.
Vendrow, J., H., et al. ”On a guided nonnegative matrix factorization.” IEEE Int.
Conf. Acoust. Speech Sig. Process. (ICASSP), 2021.
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» Joint NMF (jNMF) for Similarity

NMF learns a conic

representation of data
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» Our jNMF Similarity Method
Intuition: use the entries of S1 and S2 to measure how

much topics are shared between datasets.

Method:

∗ Scale each column in X1,X2 to be mean one.
∗ Learn rank-k jNMF approximation, [X1 X2] ≈ A[S1 S2].
∗ For i = 1, · · · , k, define

si = max
(
{s(1)

ij }
n1

j=1 ∪ {s
(2)
ij }

n2

j=1

)
where s

(1)
i1 , s

(1)
i2 , · · · , s(1)

in1
and s

(2)
i1 , s

(2)
i2 , · · · , s(2)

in2
are the entries of the

ith rows of S1 and S2, respectively.
∗ For j = 1, ...,K

∗ Choose Ti ∼ unif([0, si ]) for i = 1, 2, · · · , k.
∗ Compute p(j)

i := F
(2)
i (Ti )− F

(1)
i (Ti ), where

F
(1)
i (Ti ) :=

1

n1

n1∑
j=1

1[s(1)
ij < Ti ] and F

(2)
i (Ti ) :=

1

n2

n2∑
j=1

1[s(2)
ij < Ti ].

∗ Return p̄ = 1
K

∑K
j=1 p

(j)
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» jNMF Similarity Method

d(X1,X2) := ‖p̄‖1

p(j)
i := F

(2)
i (Ti )− F

(1)
i (Ti )
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Experiments
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» Swimmer Image Dataset

Swimmer Images

Basis vectors learned by jNMF on Swimmer
dataset X1,X1 + N where N is uniform noise.

p̄ = [0.063,−0.901, 0.076, 0.065, 0.069,
0.058, 0.058, 0.069, 0.079, 0.079]

1Donoho, D., and Stodden, V. ”When does non-negative matrix factorization give
a correct decomposition into parts?.” NeurIPS (2003).
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» Swimmer Image Dataset

Swimmer Images

X2 X1 X1Pπ λX1 X̃1 X1 + N N

d(X1, X2) 0.000 0.000 0.000 0.052 1.509 2.297
dcham(X1, X2) 0.000 0.000 0.000 0.000 0.741 1.560

88 90 92 94 96 98

q

0.00

0.01

0.02

0.03

0.04

0.05

0.06

d
(X

1
,X

2
)

jNMF Distance Measure

Chamfers Distance Measure

0.0 0.2 0.4 0.6 0.8

ǫ

0.0
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1.0
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d
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1
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1
+
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jNMF Distance Measure

Chamfers Distance Measure
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» Swimmer Image Dataset

Swimmer and
Inverse Swimmer:

p̄ = [−0.999, 1.000, 0.010,−0.017, 0.003,
−0.004, 0.015, 0.004,−0.001,−0.000]
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» 20 Newsgroups Dataset

jNMF Distance

Chamfer Distance
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jNMF Distance Chamfer Distance
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Conclusions
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» Conclusions
. jNMF provides information about dataset similarity and dissimilarity
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