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Graphs and Hypergraphs

A graph consists of a set of nodes 
and a set of edges . Each edge in  is
a set of two nodes.

In hypergraphs, edges in  can contain
any number of nodes.
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Hypergraph Data

Interaction: nodes are agents, edges
are interaction events (socializing in
groups, attending events).
Collaboration: nodes are collaborators,
edges are projects or teams (scholarly
papers, legislation, etc).
Co-presence: nodes are ingredients,
edges are recipes formed from those
ingredients.



The Hypergraph Community
Detection Problem

Given some hypergraph data, assign
each node to a community (or cluster)
of "related" nodes. 

"Related": often interpreted as "densely
interconnected."  

Applications in social network analysis,
drug discovery, image processing, data
visualization...

One review in: 
P. S. Chodrow, N. Veldt, A. R. Benson (2021). Generative
hypergraph clustering: from blockmodels to
modularity, Science Advances, 7:eabh1303



Reminder

Vector  is an eigenvector of matrix  with
eigenvalue  iff

v ∈ R
n

A ∈ R
n×n

λ ∈ R

Av = λv .



The graph... ...the adjacency matrix
 
 

We have

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0 0

1 0 1 0 1

0 1 0 1 1

0 0 1 0 0

0 1 1 0 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

aij = {
1 (i, j) ∈ E

0 otherwise.



Modeling Graphs with
Communities

Take  nodes and divide them into two
group  and .

For each pair of nodes  and , draw an
edge with probability

This gives us an adjacency matrix 
with noisy block structure.

This is called a stochastic blockmodel
(SBM).

n

a b

i j

pij = {
p i, j are in the same group
q i, j are in different group

A



Communities and Eigenvectors

Leading eigenpairs of :

Fact (from random matrix theory):
Eigenpairs of  are close to these with high
probability as  grows large.

P

λ1 = (p + q) , v1 = (1, … , 1, 1)


n copies

T

λ2 = (p − q) , v2 = (1, … , 1

n/2 copies 

, −1, … , −1


n/2 copies 

)T

n

2

n

2

A

n

Nadakuditi and Newman (2012). Graph spectra and
the detectability of community structure in networks,
Physical Review Letters



A Graph Community Detection
Algorithm

1. Compute the second-largest eigenvector 
 of .

2. If , guess that node  is in group ,
otherwise in group .

Works well if  is sufficiently large,
variations work for other graph matrices.

v2 A

v2i > 0 i a

b

p − q

Decelle et al. (2011) Inference and phase transitions in
the detection of modules in sparse networks, Phys.
Rev. Let. 107.6: 065701
Krzakala et al. (2013) Spectral redemption in
clustering sparse networks, PNAS 110 (52) 20935-
20940
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Matrices for Hypergraphs?

We could transform the hypergraph
into a graph.

Problem: loses multi-way information.

We could construct a set of adjacency
tensors , , ...

Problem: we know eigenvectors of
tensors, but not sets of tensors.

So, what should we do?....

A
(2)

A
(3)

A
(4)

a
(3)

ijk = {
1 (i, j, k) ∈ E

0 otherwise...

 
 



The Nonbacktracking Operator

The adjacency matrix is  and
operates on nodes.

The nonbacktracking operator  is a
matrix that operates on edge-node
pairs. It is often referred to as the
Hashimoto operator.

Define relation :

 and 

Then,

n × n

B

(e1, v1) → (e2, v2)

v1 ∈ e1 v2 ∈ e2

v1 ∈ e2 ∖ v2

e1 ≠ e2

B[(e1, v1), (e2, v2)] = {
1 (e1, v1) → (e2, v2)

0 otherwise.

 

"I can get to  from  by passing
through . I can get to  from 
by passing through ..."

v2 ∈ e2 e1

v1 v3 ∈ e3 e2

v2



The Nonbacktracking Operator

Popularized (for graphs) by Hashimoto,
K. (1990), Int. J. Math.

Important theorem for computation by
Bass, H. (1992), Int. J. Math.

Formulated for hypergraphs by Storm,
C. K. (2006). The Electronic Journal of
Combinatorics.

"Rediscovered" for hypergraphs by
Angelini, M. C. et al. (2015), Allerton
Conference.

 

"I can get to  from  by passing
through . I can get to  from 
by passing through ..."

v2 ∈ e2 e1

v1 v3 ∈ e3 e2

v2



The Nonbacktracking Operator

Cool topological connections: prime
cycles and zeta functions.

Can represent hyperedges of all sizes in
the same matrix!

In our stochastic blockmodel from
before, eigenvector  is correlated
with communities if  is real.

v2

λ2

Precise control over community-correlated
eigenvalues in the graph case:

Bordenave et al. (2018): Non-backtracking spectrum
of random graphs: community detection and non-
regular Ramanujan graphs. Annals of Probability.



Issue: Computation

 is indexed by edge-node pairs.

So,  is of size , where 
is the number of edges and  is the
average edge size.

A small data set might have 
nodes,  edges, and average
edge size .

, which
is already a pretty big matrix.

Eigenpair computations get expensive
fast...

B

B m⟨k⟩ × m⟨k⟩ m

⟨k⟩

n = 300
m = 8, 000

2.5

m⟨k⟩ = 8, 000 × 2.5 = 20, 000



A Generalized Ihara-Bass Theorem
Theorem (PSC, JH, NE '22): Under mild conditions, if  is an eigenvalue of 

 then either:

1.  and carries no structural information about
the hypergraph, or

2.  is an eigenvalue of the matrix

 is the number of distinct edge sizes,  is the number of nodes.
 collects adjacency information for each hyperedge size.
 collects node degrees for each hyperedge size.

 lists possible edge sizes.
 is the matrix identity of size .

 is the Kronecker product.

λ

B,

λ ∈ {1, −1, −2, … , 1 − k̄}

λ

B
′ = [

0 D − Ik̄n

(Ik̄ − K) ⊗ In A + (2Ik̄ − K) ⊗ In

] ∈ R
2k̄n×2k̄n .

k̄ n

A ∈ R
k̄n×k̄n

D ∈ R
k̄n×k̄n

K ∈ R
k̄×k̄

Iℓ ∈ R
ℓ×ℓ ℓ

⊗



Proof Sketch
1.  can be written as  for suitable operators ,  and , which

also satisfy handy relations like .
2. Consider , substitute , and use the push-

through identity:

(provided all inverses, sums, and products are defined).
3. Simplify, obtaining

B ST − R S T R

TS = A

det(λI − B) B = ST − R

det(X + YZ) = det(X) det(I + ZX
−1

Y)

det(λI − B) = det(λI − B
′) det(uninformative part) .

Approach based on a proof of the the graph Ihara-Bass formula in:  
M. C. Kempton (2016). Non-backtracking random walks and a weighted Ihara’s theorem. Open Journal of Discrete
Mathematics 6, 207-226



Issue: Computation

A small data set might have 
nodes,  edges, and average
edge size .

If , then we can compute
eigenvectors in

dimensions instead.

We can do that 100x-1,000x faster!

n = 300
m = 8, 000

2.5

k̄ = 3

2nk̄ = 1, 800 ≪ 20, 000 = m⟨k⟩



First Algorithm

1. Compute the second eigenpair 
of .

2. If  is real, separate , with 

.
3. If

assign  to cluster , else assign  to
cluster .

(λ2, v2)
B

′

λ2 v2 = (α, β)

α, β ∈ R
nk̄

ui =
k̄

∑
k=1

αik < 0 ,

i A i

B



Synthetic Testbed Eigenvector Algorithm
 

Adjusted Rand Index (ARI):

ARI = 1: perfect community detection.
ARI = 0: random noise.
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Belief Propagation...

...is the "cavity method" of statistical
physics.

...is an approximate method for
statistical inference.

...is a discrete-time dynamical system.

 
Formally, iterate these updates to
convergence: 

 is "node 's confidence that it belongs to
community  based on other nodes in tuple

."

 and  are normalization constants.

 is our stochastic blockmodel:
specifies how likely there are to be 
edges on tuple  given some community
labels .

μ
(s)
iR ← ∏

Q∈( )∖R

ν
(s)

Qi

ν
(s)
Ri ← ∑

z:zi=s

P(aR|zR) ∏
j∈R∖i

μ
(zj)

jR

1

ZiR [n]
|R|

1

ZRi

μ
(s)
iR i

s

R

ZiR ZRi

P(aR|zR)
aR

R

zR



A Linear Approximation
Theorem (PSC, NE, JH '22): Consider a
stochastic blockmodel in which:

Every node has the same expected number
of attached edges.
The expected number of attached edges
does not depend on the number of nodes .

Then:

BP has an approximate fixed point  that
contains no cluster information.
The Jacobian derivative  of the BP
dynamics around  has  entries,
except for a block of the form

n

x̄

J (x̄)
x̄ O(n−1)

J =
k̄

∑
k=1

Ck ⊗ Bk + O(n−1) .

 
 
 
 

 is a matrix of parameters that
depends on the stochastic blockmodel 

.
 is our friend the nonbacktracking

operator, restricted to edges of size .
 is the Kronecker product.

Ck

P

Bk

k

⊗

Result argued heuristically for graphs in:  
 
Krzakala et al. (2013) Spectral redemption in
clustering sparse networks, PNAS 110 (52) 20935-
20940



A Cheat
 can be a very large matrix.

As before, we can use a smaller one:

Theorem (PSC, JH, NE '22): Under mild conditions, if  is an "interesting"
eigenvalue of  then  is also an eigenvalue of the  matrix

where  is the number of communities and ,  hold statistical
parameters.

Proof is a little messier this time.

J

λ

J, λ 2nℓk̄

J
′ = (G ⊗ In) [

0 Iℓ ⊗ D

0 Iℓ ⊗ A
] − Ḡ [

0 Iℓ ⊗ Ik̄

Iℓ ⊗ (K − Ik̄−1) Iℓ ⊗ (K − 2Ik̄−1)
] ⊗ In

ℓ G Ḡ



Ok, but does it work?

Recall that we were having issues with
parameter combinations in which
edges of different sizes carried different
kinds of information.



Ok, but does it work?

Recall that we were having issues with
parameter combinations in which
edges of different sizes carried different
kinds of information.

Working with the more complicated
matrix  increases computation time,
but also allows us to detect
communities for more parameter
combinations.

J
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Algorithmic Thresholds

Recall the suspiciously round region
where our algorithm totally failed to
learn any cluster information.

This region can be estimated!

Strategy: ask when  has an eigenvalue
, using approximations analogous

to known results for graphs.

J

> 1

 
 
 
 



Algorithmic Thresholds
Conjecture: In a 2-group testbed with
edge sizes  and  edges of
size  per node, detection is possible
outside the ellipsoid with centroid 

 and radii ,
where:

Proof will involve some random matrix
theory (future work).

k1, k2, … ck

k

(xk1
, xk2

, …) (rk1
, rk2

…)

xk =

rk =

ak = .

1 − ak

2 − ak

√(k − 1)ck

2 − ak

1 − 22−k

1 − 21−k

 
 
 
 



Detectability Thresholds

In graphs, failure of nonbacktracking
spectral clustering coincides with an
information-theoretic bound on the
clustering problem.

No algorithm can reliably detect
communities.

We conjecture the same thing for
hypergraphs: inside that ellipse, the
clustering problem is not just difficult
but theoretically impossible.

Recent proof for graphs:  
Mossel et al. (2018) A proof of the blockmodel
threshold conjecture, Combinatorica.
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Future Directions

Prove the conjectured detectability
threshold.
Develop tensor-based hypergraph
community detection methods.
Consider other hypergraph block
models.



Summary

The nonbacktracking operator enables
eigenvector techniques for community
detection in hypergraphs.

Determinant identities help us speed
up computation.

There are open questions around the
fundamental limits of hypergraph
community detection.

 
 
 
 
 
 
 
 
 
 
 
 

Philip S. Chodrow, Nicole Eikmeier, and
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Thanks everyone!

Questions?



Extra slides



High School Social Contacts

 students (nodes) in a French high school.

 social contact events (edges) measured by wearable
sensors.

Average number of participants in interaction 

Cluster labels are the classes to which students are assigned.

n = 327

m = 7, 818

⟨k⟩ = 2.3

Data originally from:  
R. Mastrandrea et al. (2015), Contact patterns in a high school: A comparison between data collected using wearable sensors,
contact diaries, and friendship surveys. PLoS One 10:9, e0136497 

Prepared by A. R. Benson et al. (2018), Simplicial closure and higher-order link prediction. Proceedings of the National Academy
of Sciences 10.1073/pnas.1800683115



High School Social Contacts



On the Other Hand...Senate Bills

 U.S. senators (nodes) cosponsoring bills.

 bills (edges) in period 1973-2016.

Average number of cosponsors .

Community labels are Democrat/Republican.

n = 293

m = 20, 006

⟨k⟩ = 7.3

Data originally from:  
J. Fowler (2006), Legislative cosponsorship networks in the U.S. House and Senate. Social Networks 28:4, 454--465 

Prepared by A. R. Benson et al. (2018), Simplicial closure and higher-order link prediction. Proceedings of the National Academy
of Sciences 10.1073/pnas.1800683115



Senate Bills



Big Picture: you want hypergraph methods when edges of
different sizes give you different information about the
community structure.



My Papers



Foundations of Network
Data Science

What models accurately
reflect features of network
data?

What algorithms can we use
to learn these models?

What mathematical
challenges arise from these
questions?

 
Nonbacktracking specral clustering of
nonuniform hypergraphs 
PSC, Nicole Eikmeier, and Jamie Haddock 
In preparation (2022)

 
Generative hypergraph clustering: from
blockmodels to modularity 
PSC, Nate Veldt, and Austin Benson  
Science Advances (2021)

 
Moments of uniformly random multigraphs with
fixed degree sequences 
PSC 
SIAM J. Mathematics of Data Science (2020)

 
Configuration models of random hypergraphs 
PSC  
J. Complex Networks (2020)

https://link.springer.com/article/10.1007/s41109-020-0252-y
https://advances.sciencemag.org/content/7/28/eabh1303
https://epubs.siam.org/doi/abs/10.1137/19M1288772
https://academic.oup.com/comnet/article-abstract/8/3/cnaa018/5879929


Models of Biosocial
Systems

How can individual decisions
lead to large-scale social
division or hierarchy?

What mechanisms do math
models need to capture
these phenomena?

What can we prove or
approximate about the
behavior of these models?

 
Smoothly nonlinear opinion dynamics 
Heather Zinn Brooks, PSC, and Mason A. Porter  
In preparation (2022)

 
Model-based approaches to layer aggregation
in animal dominance networks 
PSC, Kelly Finn, and and Mason A. Porter  
In preparation (2022)

 
Emergence of hierarchy in networked
endorsement dynamics 
Mari Kawakatsu, PSC, Nicole Eikmeier, and Dan
Larremore  
Proc. National Academy of Sciences (2021)

 
Local symmetry and global structure in
adaptive voter models 
PSC and Peter Mucha 
SIAM J. Applied Math (2020)

https://advances.sciencemag.org/content/7/28/eabh1303
https://epubs.siam.org/doi/pdf/10.1137/18M1232346?casa_token=st1ib1C3dRUAAAAA:u69ZSyBJVU-keaUQ6eO6wVKcM42DNeUReNMDWhVVT5pUDozAHYx8NnGz7iKZ4gX1gtMxGYMCucA


Data Science and Social
Responsibility

How can mathematics unify
and support methods in
quantitative sociology?

How can we acquire and
analyze data sets on equity
and justice?

How can we model the
history (and future?) of
representation in our
discipline?

 
Impact of race on sentencing in a state court  
Hinal Jajal (undergraduate mentee), PSC 
Ongoing work (2022)

 
Dynamics of gender representation in
mathematical subfields 
Ben Brill (undergraduate mentee) et al.  
Ongoing work (2022)

 
Space-based observational constraints on NO₂
air pollution inequality from diesel traffic in
major U.S. cities 
Demetillo et al. Geophysics Review Letters (2021)

 
Structure and information in spatial
segregation 
PSC 
Proc. National Academy of Sciences (2017)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094333
https://www.pnas.org/content/pnas/114/44/11591.full.pdf

