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Setup

We are interested in solving highly overdetermined systems of equations

(or inequalities), Ax = b (Ax ≤ b), where A ∈ Rm×n, b ∈ Rm and

m� n. Rows are denoted aTi .
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Iterative Projection Methods

If {x ∈ Rn : Ax = b} is nonempty, these methods construct an

approximation to an element:

1. Randomized Kaczmarz Method

2. Motzkin’s Method

3. Sampling Kaczmarz-Motzkin Methods (SKM)
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Randomized Kaczmarz Method

Given x0 ∈ Rn:

1. Choose ik ∈ [m] with probability
‖aik ‖

2

‖A‖2
F

.

2. Define xk := xk−1 +
bik−a

T
ik
xk−1

||aik ||2
aik .

3. Repeat.
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Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations Ax = b.

Then the Random Kaczmarz method converges to x linearly in

expectation:

E||xk − x||22 ≤
(

1− 1

||A||2F ||A−1||22

)k

||x0 − x||22.
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Motzkin’s Relaxation Method

Given x0 ∈ Rn:

1. If xk is feasible, stop.

2. Choose ik ∈ [m] as ik := argmax
i∈[m]

|aTi xk−1 − bi |.

3. Define xk := xk−1 +
bik−a

T
ik
xk−1

||aik ||2
aik .

4. Repeat.
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Motzkin’s Method

x0

9
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Motzkin’s Method
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Convergence Rate

Theorem (Agmon 1954)

For a consistent, normalized system, ‖ai‖ = 1 for all i = 1, ...,m,

Motzkin’s method converges linearly to the solution x:

‖xk − x‖2 ≤
(

1− 1

m‖A−1‖2

)k

‖x0 − x‖2.
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Our Hybrid Method (SKM)

Given x0 ∈ Rn:

1. Choose τk ⊂ [m] to be a sample of size β constraints chosen

uniformly at random from among the rows of A.

2. From among these β rows, choose ik := argmax
i∈τk

|aTi xk−1 − bi |.

3. Define xk := xk−1 +
bik−a

T
ik
xk−1

||aik ||2
aik .

4. Repeat.
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SKM Method Convergence Rate

Theorem (De Loera - H. - Needell 2017)

For a consistent, normalized system the SKM method with samples of

size β converges to the solution x at least linearly in expectation: If sk−1

is the number of constraints satisfied by xk−1 and

Vk−1 = max{m − sk−1,m − β + 1} then

E‖xk − x‖2 ≤
(

1− 1

Vk−1‖A−1‖2

)
‖x0 − x‖2

≤
(

1− 1

m‖A−1‖2

)k

‖x0 − x‖2.
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Experimental Convergence

. β: sample size

. A is 50000× 100 Gaussian matrix, consistent system

. ‘faster’ convergence for larger sample size
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Experimental Convergence

. A is 10000× 100 “correlated” matrix, consistent system

15



Experimental Convergence

. SVM linear feasibility problem Ax ≤ b
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Experimental Convergence

. LP linear feasibility problem Ax ≤ b
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Convergence Rates

. RK: E||xk − x||22 ≤
(

1− 1
||A||2F ||A−1||22

)k

||x0 − x||22.

. MM: ‖xk − x‖2 ≤
(

1− 1
m‖A−1‖2

)k

‖x0 − x‖2.

. SKM: E‖xk − x‖2 ≤
(

1− 1
m‖A−1‖2

)k

‖x0 − x‖2.

. Why are these all the same?
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An Accelerated Convergence Rate

Theorem (H. - Needell 2018+)

Let x denote the solution of the consistent, normalized system Ax = b.

Motzkin’s method exhibits the (possibly highly accelerated) convergence

rate:

‖xT − x‖2 ≤
T−1∏
k=0

(
1− 1

4γk‖A−1‖2

)
· ‖x0 − x‖2

Here γk bounds the dynamic range of the kth residual, γk := ‖Axk−Ax‖2

‖Axk−Ax‖2
∞

.

. improvement over previous result when 4γk < m
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Netlib LP Systems
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γk : Gaussian systems

γk .
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logm
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Gaussian Convergence

. A is 50000× 100 Gaussian matrix, consistent system
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Extending to SKM

. A is 50000× 100 Gaussian matrix, consistent system

. bound uses dynamic range of sample of β rows

. use this bound to design methods which identify optimal β?
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Extending to SKM

. A is 50000× 100 “correlated” matrix, consistent system

. bound uses dynamic range of sample of β rows
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Is this the right problem?

xLS

/ noisy

. corrupted

x∗

xLS
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Noisy Convergence Results

Theorem (Needell 2010)

Let A have full column rank, denote the desired solution to the system

Ax = b by x, and define the error term e = Ax− b. Then RK iterates

satisfy

E‖xk − x‖2 ≤
(

1− 1

‖A‖2
F‖A−1‖2

)k

‖x0 − x‖2 + ‖A‖2
F‖A−1‖2‖e‖2

∞

Theorem (H. - Needell 2018+)

Let x denote the desired solution of the system Ax = b and define the

error term e = b−Ax. If Motzkin’s method is run with stopping criterion

‖Axk − b‖∞ ≤ 4‖e‖∞, then the iterates satisfy

‖xT − x‖2 ≤
T−1∏
k=0

(
1− 1

4γk‖A−1‖2

)
· ‖x0 − x‖2 + 2m‖A−1‖2‖e‖2

∞
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Noisy Convergence

. A is 50000× 100 Gaussian matrix, inconsistent system (Ax = b + e)

. Left: Gaussian error e

. Right: sparse, ‘spiky’ error e

. Motzkin suffers from a worse ‘convergence horizon’ if e is sparse
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What about corruption?

x0

xM1

xM2

xM3

xRK1

xRK2

xRK3
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Problem

Problem: Ax = b + e

(Corrupted) Error (e): sparse, arbitrarily large entries

Solution (x∗): x∗ ∈ {x : Ax = b}

Applications: logic programming, error correction in telecommunications

Problem: Ax = b + e

(Noisy) Error (e): small, evenly distributed entries

Solution (xLS): xLS ∈ argmin‖Ax− b− e‖2
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Why not least-squares?

x∗

xLS
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MAX-FS

MAX-FS: Given Ax = b, determine the largest feasible subsystem.

. MAX-FS is NP-hard even when restricted to homogenous systems

with coefficients in {−1, 0, 1} (Amaldi - Kann 1995)

. no PTAS unless P = NP
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

We call ε∗/2 the detection horizon.
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Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.

Lemma

Let ε∗ = mini∈supp(e) |Ax∗ − b|i = |ei | and suppose |supp(e)| = s. If

||ai || = 1 for i ∈ [m] and ||x− x∗|| < 1
2ε
∗ we have that the d ≤ s indices

of largest magnitude residual entries are contained in supp(e). That is,

we have D ⊂ supp(e), where

D = argmax
D⊂[A],|D|=d

∑
i∈D

|Ax− b|i .

We call ε∗/2 the detection horizon.
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Goal: Use RK to detect the corrupted equations with high probability.
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Proposed Method

Method 1 Multiple Round Kaczmarz

1: procedure MRK(A,b, k ,W , d)

2: S = ∅
3: for i = 1, 2, ...W do

4: xik = kth iterate produced by RK with x0 = 0, A, b.

5: D = d indices of the largest entries of the residual, |Axik − b|.
6: S = S ∪ D

7: return x, where ASC x = bSC
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 1, i = 1, S = ∅

x∗
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H6 H7
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 2, i = 1, S = {7}
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 1, i = 2, S = {7}
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 1, i = 2, S = {7}
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 2, i = 2, S = {7, 5}

x∗

x2
0

H1

H2

H3

H4

H5

H6 H7

x2
1

x2
2

31



Example

MRK(A,b,k = 2,W = 3,d = 1): j = 1, i = 3, S = {7, 5}
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 1, i = 3, S = {7, 5}
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Example

MRK(A,b,k = 2,W = 3,d = 1): j = 2, i = 3, S = {7, 5, 6}

x∗

x3
0

H1
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x3
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Example

Solve ASC x = bSC .

x∗

H1

H2

H3

H4
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Theoretical Guarantees

Lemma

Let ε∗ = mini∈supp(e) |Ax∗ − b|i = |ei | and suppose |supp(e)| = s.

Assume that ||ai || = 1 for all i ∈ [m] and let 0 < δ < 1. Define

k∗ =

⌈
log
(
δ(ε∗)2

4||x∗||2

)
log
(

1−
σ2

min(A
supp(e)C

)

m−s

)⌉.
Then in window i of the Windowed Kaczmarz method, the iterate

produced by the RK iterations, xik∗ satisfies

P
[
||xik∗ − x∗|| ≤ 1

2
ε∗
]
≥ p := (1− δ)

(m − s

m

)k∗
.

32



Theoretical Guarantees

Theorem (H. - Needell 2018+)

Assume that ‖ai‖ = 1 for all i ∈ [m] and let 0 < δ < 1. Suppose

d ≥ s = |supp(e)|, W ≤ bm−nd c and k∗ is as given in the previous

lemma. Then the Windowed Kaczmarz method on A,b will detect the

corrupted equations (supp(e) ⊂ S) and the remaining equations given by

A[m]−S ,b[m]−S will have solution x∗ with probability at least

pW := 1−
[

1− (1− δ)
(m − s

m

)k∗]W
.
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Success Rates (Gaussian A ∈ R50000×100)
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Success Rates (Gaussian A ∈ R50000×100)
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Total Experimental Success Rates (Gaussian A ∈ R50000×100)

. experimental rate of success of detecting all corrupted equations

over all W = bm−nd c windows
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Success Rates (“correlated” A ∈ R50000×100)

. Upper left: probability of

detecting all corrupted
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pW := 1−
[

1−(1−δ)
(m − s

m

)k∗]W

36



Success Rates (“correlated” A ∈ R50000×100)

. Upper right: experimental

rate of detecting all

corrupted equations in one

round
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Success Rates (“correlated” A ∈ R50000×100)

. Lower left: experimental

rate of detecting all

corrupted equations in one

round for varying number of

RK iterations k
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Conclusions

. Motzkin’s method is accelerated even in the presence of noise

• γk , the parameter governing this acceleration, governs the

acceleration of SKM

. γk can be bounded for some systems

. RK methods may be used to detect corruption

. theoretical bounds do not reflect empirical results
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Future Work

. identify useful bounds on γk for other useful systems

. design dynamic sampling algorithms which use the optimal sample

size β

. reduce dependence on artificial parameters in corruption detection

bounds

. introduce a Bayesian framework into MRK
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Thanks for attending!

Questions?
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