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Objectives

We study the effects of sampling and
data completion techniques on sim-
ple statistical inferences. We com-
pare results of inferences on com-
plete data and data that has been
subsampled and then completed.

Sampling Techniques

Uniform sampling: Sample each
entry with equal probability p ∈ (0, 1).
Structured sampling: Sample en-
tries equal to zero with probability p0,
and nonzero entries with probability p1,
where p0 < p1.
The sampled entries are denoted Ω and
the subsampled matrix is denoted MΩ.

Completion Techniques

Nuclear-norm minimization:
argmin
X∈Rm×n

‖X‖∗ (NNM)
s.t. Mij = Xij for all (i, j) ∈ Ω.

`1-Regularized NNM:
argmin
X∈Rm×n

‖X‖∗ + α‖XΩC‖1 (`1-NNM)
s.t. Mij = Xij for all (i, j) ∈ Ω

with regularization parameter α > 0.
The `1-regularization in the objective of
`1-NNM encourages unobserved entries
of the recovered matrix to be near 0 [1].

Inference Techniques

Entrywise mean:

λ̄(A) := 1
mn

m∑
i=1

n∑
j=1

Aij

Row mean:
µ(A) := 1

m
m∑
i=1
~ai

In our application to health survey
data, these inferences could be an aver-
age “wellness” score for a patient group
(entrywise mean) or the average re-
sponses of a patient group (row mean).

Error Measurements

Norm. matrix recovery error:
E(M,

„�
M) := ‖M − „�

M‖F/‖M‖F
Abs. entrywise mean error:

Eλ̄(M,
„�
M) := |λ̄(M)− λ̄(„�

M)|
Norm. row mean error:

Eµ(M,
„�
M) := ‖µ(M)− µ(„�

M)‖2
‖µ(M)‖2

The matrix recovery error measures the
error introduced by sampling and data
completion, while the inference errors
measure the error introduced into the
inference by these processes.

Methodology

(1)Begin with complete matrix M either artificial or extracted from real data. (We
take this as the ground truth.)

(2)Use either uniform or structured sampling strategy to obtain an incomplete ob-
served matrix, MΩ. (The values of p and p0, p1 used for sampling are noted in
each experiment.)

(3)Recover „�
M via either NNM or `1-NNM.

.For MΩ sampled uniformly, we recover „�
M via NNM.

.For MΩ sampled via structured sampling, we recover „�
M via `1-NNM.

◦We choose the regularization parameter α optimally from among
{0.05, 0.1, 0.2, ..., 0.5} to minimize the resulting error ‖M − „�

M‖F .
(4)Compute either the entrywise mean or the row mean.
(5)Plot recovery and inference errors. (Plotted results are averaged over 10 trials.)

Experimental Results

In the figures below, we plot matrix and inference recovery errors on a 30 × 30
rank 5 synthetic matrix and a complete 30 × 16 submatrix of the MyLymeData
health survey data; the figures differ by the choice of zero sampling probability p0
for the structured sampling strategy and the data type. Errors are plotted versus
the proportion of observed entries ω. In each of the groups of four plots below,
we plot optimal regularization parameter α in the upper left; normalized matrix
recovery errors E in upper right; normalized row mean errors Eµ in lower left;
absolute entrywise mean errors Eλ̄ in lower right.

Figure 1: Recovery errors for unif. sampling with NNM and structured sampling with p0 = 0 (no
entries equal to zero are sampled) and `1-NNM on left: synthetic data; right: MyLymeData.

Figure 2: Recovery errors for unif. sampling with NNM and structured sampling with p0 = 0.2
and `1-NNM on left: synthetic data; right: MyLymeData.

Figure 3: Recovery errors for uniform sampling with NNM and structured sampling with p0 = 0.4
and `1-NNM on left: synthetic data; right: MyLymeData.
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Theoretical Results

Together our two theoretical results of-
fer a bound on the inference recovery
errors even if the matrix recovery is not
exact.
Theorem 1: Let λ̄ and µ be the
entrywise and row mean operators re-
spectively. Then
∣∣∣∣∣∣∣∣λ̄(M)− λ̄(„�

M)
∣∣∣∣∣∣∣∣ ≤ (mn)−

1
q‖M − „�

M‖q
and

‖µ(M)−µ(„�
M)‖q ≤


nq−1

m



1
q

‖M−„�
M‖q

for allM,
„�
M ∈ Rm×n and 1 ≤ q ≤ ∞.

Figure 4: Averages of 400 sampled inference
recovery errors and the derived upper bounds
for uniform observation sampling probabilities
from 0 to 1. Left: entrywise mean error; right:
row mean error.

Theorem 2: Let M ∈ Rm×n, Ω,
and „�

M be computed via NNM. Let
r = rank(M) denote the rank of M ,
and denote the singular values of M
by σ1 ≥ σ2 ≥ · · · ≥ σr in decreasing
order. Then
‖M − „�

M‖F ≤ 2
Õ
r2σ2

1 − ‖MΩ‖2
F .

Conclusion

Our numerical experiments demon-
strate that simple inferences such as the
entrywise mean or the row mean can be
recovered accurately even when errors
are introduced by the matrix recovery.
We prove bounds on the inference re-
covery error in terms of the matrix re-
covery error for the entrywise mean and
the row mean. Additionally, we prove
an analytical bound on the matrix re-
covery error which applies even when
the matrix cannot be recovered exactly.
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