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Main question: How can we identify the topic hierarchy

of MyLymeData symptom questions?

Answer: Neural Nonnegative Matrix Factorization

[Gao, H., Molitor, Needell, Sadovnik, Will, Zhang '19]

Sampling Kaczmarz-Motzkin Methods

[H., Ma '19], [De Loera, H., Needell '17]
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> latent dirichlet allocation (LDA)

[Pritchard, Stephens, Donnelly 2000] Pearson, K. (1901) On lines and planes
of closest fit to systems of points in
[Blei, Ng, Jordan 2003] S

> clustering (k-means, Gaussian mixtures)
[Lloyd 1957]
[Pearson 1894] " e

> nonnegative matrix factorization (NMF)

[Paatero, Tapper 1994] ’ ’ E

Lee, D., Seung, S. (1999) Learning the
[Lee, Seung 1999] parts of objects by non-negative matrix

factorization.
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Nonnegative Matrix Factorization (NMF)

& k n
- -

x kl St

m X ~ m A

> Often formulated as optimization problem

min |X — AS||F.

X k kx
AeR’go ,SeRzO"

> Non-convex optimization problem, NP-hard to compute global
optimum for fixed k [Vavasis 2008]
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Hierarchical NMF

Model: Sequentially factorize
X ~ A0SO 50 AWM sO) ~ AR SA) | §E-1) 1 AL (L),

3 9

n £ ) n

1 (1)
« k([,)j AV x Kl JI S

m X ~ om A(U)

> k() supertopics collecting k1 subtopics

> error propagates through layers

[Cichocki, Zdunek '06] 8
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> hNMF can be implemented in a

feed-forward neural network
I T I structure
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Goal: Identify weights Wy, W», ..., W, to minimize model error

N
E(Wi) =D F(y(xn {Wi}), %0, ts).
n=1
Training:
> forward
Input Hidden Output propagation:
layer layer layer z; = o(Wix),
z; = o(Whzy), ...,
X . y y=o0(Wiz;_1)

o(Wr) o(W) > back propagation:

update {W;} with
VE({W})
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Our method: Neural NMF

Goal: Develop true forward and back propagation algorithms for hNMF.

KO n O

-— -—

=

Training:
> forward propagation:

S = g(X, A®),
X s© SO SW = g(s©, Ay, .
St = g(Stt=1) Al
> back propagation: update
{A0} with VE({A(}) 11
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> least-squares is a fundamental subroutine in forward-propagation

> iterative projection methods can solve these problems
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Iterative Projection Methods

If {x € R": Ax = b} is nonempty, these methods construct an
approximation to a solution:

1. Randomized Kaczmarz Method
2. Motzkin's Method
3. Sampling Kaczmarz-Motzkin Methods (SKM)

Applications:

1. Tomography (Algebraic Reconstruction Technique)
2. Linear programming

3. Average consensus (greedy gossip with eavesdropping)
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Given xg € R"™:
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Motzkin’s Method

Given xg € R"™:

1. Choose ik € [m] as
ix := argmax |a,.Txk_1 — bi|.

i€[m]
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2. Define Xk = Xg—1 + kHa%kHZa"k'
ik

3. Repeat.
[Motzkin, Schoenberg 1954] 16
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Convergence Rates

Below are the convergence rates for the methods on a system, Ax = b,
which is consistent with unique solution x, whose rows have been
normalized to have unit norm.

> RK (Strohmer, Vershynin '09):

O-swin(A) K
Elxi — x|3< (1 - 72 22) flxo - x|[3
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Convergence Rates

Below are the convergence rates for the methods on a system, Ax = b,
which is consistent with unique solution x, whose rows have been
normalized to have unit norm.

> RK (Strohmer, Vershynin '09):

02min(A) K
Elxi — x|3< (1 - 72 22) flxo - x|[3

> MM (Agmon '54):
O—%in(A) k
e = x| (1= 2222 ey — x3

> SKM (DelLoera, H., Needell '17):

O—Ewin(A) k
Ellxe — x[3< (1 - 72220 jxo — x|

Why are these all the same?
19



A Pathological Example

@Xp
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Structure of the Residual

Several works have used sparsity of the residual to improve the
convergence rate of greedy methods.

[De Loera, H., Needell '17], [Bai, Wu '18], [Du, Gao '19]
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Structure of the Residual

Several works have used sparsity of the residual to improve the
convergence rate of greedy methods.

[De Loera, H., Needell '17], [Bai, Wu '18], [Du, Gao '19]

However, not much sparsity can be expected in most cases. Instead, we'd
like to use dynamic range of the residual to guarantee faster convergence.

2 re(myllArxi — b (|3
ZTe([g])HATXk — b2

Yk =

21



Accelerated Convergence Rate

Theorem (H. - Ma 2019)

Let A be normalized so ||a;||2=1 for all rows i = 1,...,m. If the system
Ax = b is consistent with the unique solution x* then the SKM method
converges at least linearly in expectation and the rate depends on the
dynamic range of the random sample of rows of A, 7j. Precisely, in the
Jj + 1st iteration of SKM, we have

2
* (12 BU i (A) * 12
Ex b = x [ (1= =2 ) I — <7

X [m])l\ATXJ*bTHg
where 7 := 3 8

e(m) |A-x;—b[[Z

22



Accelerated Convergence Rate

—pB3=1(RK)
——B3=10
—— =100
—— 3 = 1000

—— B =m (MM)
10-10 ’

50

100 150
Iterations

> A is 50000 x 100 Gaussian matrix, consistent system

> bound uses dynamic range of sample of 3 rows
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What can we say about

>‘~L([T]) Arxi—b- |13

Recall v; :=

\;:k(,([m])HATX/ bTH?x :
L 3
1<y <8
Eq[lxk = x*[3< aflxi-1 —x*|3
Previous:
— Uzmin(A)
_ Ur2nin(A)
2 2

MM 1— Umiz(A) S a S 1— Umi’nn(A)

[H., Needell 2019] 24



What can we say about

Z:TL([T]) [[Arx;—b~ \%

Hezal 4 = TN
- 3
1<y <8
Er, 1% — x*[3< allxx—1 — x*|3
Previous: Current:
_ Uzmin(A) _ Uzm'm(A)
_ Tain(A) Boiin(A) oain(A)
2 (A 2 (A 2in(A
MM | 1— il < g <1 Dl | 152 (A) < o<1 Zmnld)

[H., Needell 2019], [H., Ma 2019] 24



What can we say abou

>_:TL([/7JJ) Arxj—b; \3

Recall 7 := <= - .
4 > (([m])HATxJ b2,
- 3

1<y <B

> nontrivial bounds on ~y, for Gaussian and average consensus systems
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Roughly, if we know the value of 7;, we can (just) do it.

3 %107 . .
== Theoretically required
© — =Empirically required
S 25 1
W
W2 ]
= 1.5 -
£ -
s} - -
Ay -
C 4 - _
i -
= -
N -
0.5 .
5 10 15 20
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Back to Hierarchical NMF
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F Compare:
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I T I > Neural NMF
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Experimental results: synthetic data

Izzz ;> Supertopic 1 >
Topic 3

T::: 4> Supertopic 2

| :::: z> Supertopic 3 >
| Topic 7

i | T::: s> Supertopic 4

Topic 9
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Experimental results: synthetic data

Original hNMF Deep NMF Neural NMF

> unsupervised reconstruction with two-layer structure
(k© =9, k(1) = 4)
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Experimental results: synthetic data
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Experimental results: MyL

Fatigue -

Facial nerve (Bell's) palsy
Bulls-eye rash

Other Symptoms

Evidence of tick bite

Red skin rash

Early Other Symptoms
Shooting pains that interfere with sleep
Lightheadedness

Large joint pain

None of the above symptoms
Early Flu-like symptoms
Fainting, shortness of breath
Headache

Joint pain

Muscle aches

Severe headaches/neck stiffness
Flu-like symptoms

Nerve pain

Psychiatric

Heart-related symptoms
Memory loss

Twitching

Sleep impairment

Cognitive impairment

hNMF

Neural NMF

Nerve pain -

Psychiatric

Muscle aches
Heart-related symptoms
Headache

Joint pain

Flu-like symptoms
Fatigue

Bulls-eye rash
Memery loss
Twitching

Sleep impairment
Cognitive impairment

- Red skin rash
||

Facial nerve (Bell's) palsy
Severe headaches/neck stiffness
Shooting pains that interfere with sleep
Lightheadedness

Other Symptoms

Large joint pain

Fainting, shortness of breath
Early Flu-like symptoms
Evidence of tick bite

Early Other Symptoms
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MyLymeData Takeaways

D

> bulls-eye rash (diagnosing symptoms) topic does not seem to persist
for smaller number of topics

> unwell and well patients have very different presentation of bulls-eye
rash symptom in topics

> patients unwell because lacking bulls-eye rash for diagnosis or
indicative of different disease pathway?

29
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Conclusions

> hNMF model can be |mplemented as a feed- forward neural network

E (A==

> presented our method Neural NMF

> described family of algorithms which can solve fundamental

least-squares subroutine

> presented accelerated convergence analysis for SKM

> applied

10°

—— 3 = 1000
o3 = m (MM),

50 100 150
s

Neural NMF to synthetic data and MyLymeData
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Related Current/Future Work

Nonnegative Tensor Decomposition (NTD):
> for dynamic topic modeling (stemming from WiSDM 2019)
> hierarchical NTD (joint with Needell, Vendrow*)

> robustness of nonnegative CANDECOMP /PARAFAC
decomposition (joint with Kassab®)

> Applications: NBA data (joint with Liu*), temporal political

|
data %
A\
Iterative Projection Methods: sz
> dynamic SKM methods (joint with Ma)

> corruption robust methods (joint with Needell, Rebrova,
Swartworth®)

> AutoML hyperparameter selection (joint with Heiner*)

> Applications: linear network dynamics problems

* denotes undergraduate collaborator, ® denotes graduate collaborator
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Other Unrelated Work

Combinatorial Methods:

> Wolfe's method (joint with De Loera,
Rademacher)

> Hansen-Lawson method

> Applications: metagenomic binning

Asynchronous Compressed Sensing:

> Bayesian asynchronous methods (joint
with Needell, Rahnavard, Zaeemzadeh)

> convergence analysis of IHT variants

> Sparse RK
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Experimental results: synthetic data

Original
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> semisupervised reconstruction (40% labels) with three-layer
structure (k@ =9, k(1) = 4, k() = 2)



Experimental results: synthetic data

Table 1: Reconstruction error / classification accuracy

Layers Hier. NMF Deep NMF Neural NMF
1 0.053 0.031 0.029
Unsuper. 2 0.399 0.414 0.310
3 0.860 0.838 0.492
1 0.049 / 0.933 | 0.031 / 0.947 0.042 /1
Semisuper. 2 0.374 / 0.926 | 0.394 / 0.911 0.305 /1
3 0.676 / 0.930 | 0.733 /0.930 | 0.496 / 0.990
1 0.052 / 0.960 | 0.042 / 0.962 0.042 /1
Supervised 2 0.311 / 0.984 | 0.310 / 0.984 0.307 / 1
3 0.495 /1 0.494 /1 0.498 / 1
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Deep NMF

Goal: Exploit similarities between neural networks and hierarchical NMF.

> [Flenner, Hunter '18]

e introduces nonlinear pooling operator after each layer
e introduces multiplicative updates method meant to backpropagate

> [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
e relaxes some of nonnegativity constraints in hNMF
> [Le Roux, Hershey, Weninger '15]

e introduces NMF backpropagation algorithm with “unfolding” (no
hierarchy)

> [Sun, Nasrabadi, Tran '17]

e similar method lacking nonnegativity constraints
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