Scaling the Hierarchical Topic Modeling Mountain

Neural NMF and Iterative Projection Methods

Jamie Haddock Harvey Mudd College, January 28, 2020

Computational and Applied Mathematics UCLA

Mathematical Tools:

- ▷ probability theory
- ▷ convex geometry/analysis
- ▷ polyhedral theory
- ▷ ..

Data:

- ▷ MyLymeData surveys
- ▶ Netlib linear programs
- ▶ UCI repository
- ▷ computerized tomography
- ▶ NBA data
- ▷ ...

Problems or Models:

- ▶ linear programs
- ▷ nonnegative matrix factorization
- ▷ neural networks
- ▷ compressed sensing
- ▷ ...

Data:

- ▶ 20newsgroup
- ▶ Netlib linear programs
- ▶ UCI repository
- ▷ computerized tomography
- ▶ NBA data
- \triangleright ...

Problems or Models:

- ▷ linear least-squares
- ▶ linear programs
- ▷ nonnegative matrix factorization
- > neural networks
- ▷ compressed sensing
- D . . .

Data:

- ▶ Netlib linear programs
- ▶ UCI repository
- ▷ computerized tomography
- ▶ NBA data
- ▷ ...

Methods or Algorithms:

- ▷ perceptron
- iterative projections
- ▶ Wolfe's method
- iterative hard thresholding
- ▶ backpropagation
- ▷ ...

Talk Outline

- 1. Introduction
- 2. Neural NMF
- 3. Iterative Projection Methods
- 4. Applications
- 5. Conclusions

Introduction

ightharpoonup MyLymeData: large collection of Lyme disease patient survey data collected by LymeDisease.org (\sim 12,000 patients, 100s of questions)

Main question: How can we identify the topic hierarchy of MyLymeData symptom questions?

Main question: How can we identify the topic hierarchy of MyLymeData symptom questions?

Main question: How can we identify the topic hierarchy of MyLymeData symptom questions?

Answer: Neural Nonnegative Matrix Factorization
[Gao, H., Molitor, Needell, Sadovnik, Will, Zhang '19]

Main question: How can we identify the topic hierarchy of MyLymeData symptom questions?

Answer: Neural Nonnegative Matrix Factorization
[Gao, H., Molitor, Needell, Sadovnik, Will, Zhang '19]

Main question: How can we identify the topic hierarchy of MyLymeData symptom questions?

Answer: Neural Nonnegative Matrix Factorization
[Gao, H., Molitor, Needell, Sadovnik, Will, Zhang '19]

Sampling Kaczmarz-Motzkin Methods [H., Ma '19], [De Loera, H., Needell '17]

▷ principal component analysis (PCA)[Pearson 1901][Hotelling 1933]

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space.

```
principal component analysis (PCA)[Pearson 1901][Hotelling 1933]
```

▶ latent dirichlet allocation (LDA) [Pritchard, Stephens, Donnelly 2000] [Blei, Ng, Jordan 2003]

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space.

```
principal component analysis (PCA)[Pearson 1901][Hotelling 1933]
```

▶ latent dirichlet allocation (LDA) [Pritchard, Stephens, Donnelly 2000] [Blei, Ng, Jordan 2003]

▷ clustering (k-means, Gaussian mixtures)[Lloyd 1957][Pearson 1894]

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space.

- principal component analysis (PCA)[Pearson 1901][Hotelling 1933]
- ▶ latent dirichlet allocation (LDA) [Pritchard, Stephens, Donnelly 2000] [Blei, Ng. Jordan 2003]
- ▷ clustering (k-means, Gaussian mixtures)[Lloyd 1957][Pearson 1894]
- ▷ nonnegative matrix factorization (NMF)[Paatero, Tapper 1994][Lee, Seung 1999]

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space.

Lee, D., Seung, S. (1999) Learning the parts of objects by non-negative matrix factorization.

Model: Given nonnegative data X, compute nonnegative A and S of lower rank so that

Model: Given nonnegative data X, compute nonnegative A and S of lower rank so that

▷ Often formulated as optimization problem

$$\min_{A \in \mathbb{R}^{m \times k}_{\geq 0}, S \in \mathbb{R}^{k \times n}_{\geq 0}} ||X - AS||_{F}.$$

Deliberation Often formulated as optimization problem

$$\min_{A \in \mathbb{R}^{m \times k}_{> 0}, S \in \mathbb{R}^{k \times n}_{> 0}} ||X - AS||_{F}.$$

Non-convex optimization problem, NP-hard to compute global optimum for fixed *k* [Vavasis 2008]

$$X \approx A^{(0)}S^{(0)}, S^{(0)} \approx A^{(1)}S^{(1)}, S^{(1)} \approx A^{(2)}S^{(2)}, ..., S^{(\mathcal{L}-1)} \approx A^{(\mathcal{L})}S^{(\mathcal{L})}.$$

$$X \approx A^{(0)}S^{(0)}, S^{(0)} \approx A^{(1)}S^{(1)}, S^{(1)} \approx A^{(2)}S^{(2)}, ..., S^{(\mathcal{L}-1)} \approx A^{(\mathcal{L})}S^{(\mathcal{L})}.$$

$$X \approx A^{(0)}S^{(0)}, S^{(0)} \approx A^{(1)}S^{(1)}, S^{(1)} \approx A^{(2)}S^{(2)}, ..., S^{(\mathcal{L}-1)} \approx A^{(\mathcal{L})}S^{(\mathcal{L})}.$$

Model: Sequentially factorize

$$X \approx A^{(0)}S^{(0)}, S^{(0)} \approx A^{(1)}S^{(1)}, S^{(1)} \approx A^{(2)}S^{(2)}, ..., S^{(\mathcal{L}-1)} \approx A^{(\mathcal{L})}S^{(\mathcal{L})}.$$

$$X \approx A^{(0)}S^{(0)}, S^{(0)} \approx A^{(1)}S^{(1)}, S^{(1)} \approx A^{(2)}S^{(2)}, ..., S^{(\mathcal{L}-1)} \approx A^{(\mathcal{L})}S^{(\mathcal{L})}.$$

- $\triangleright k^{(\ell)}$: supertopics collecting $k^{(\ell-1)}$ subtopics

Neural NMF

▷ hNMF can be implemented in a feed-forward neural network structure

Feed-forward Neural Networks

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$\sum_{n=1}^{N} E(\lbrace W_i \rbrace) = f(\mathbf{y}(\mathbf{x}_n, \lbrace W_i \rbrace), \mathbf{x}_n, \mathbf{t}_n).$$

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$E(\{W_i\}) = \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \{W_i\}) - \mathbf{t}_n\|_2^2.$$

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$E(\lbrace W_i \rbrace) = \sum_{n=1}^{N} f(\mathbf{y}(\mathbf{x}_n, \lbrace W_i \rbrace), \mathbf{x}_n, \mathbf{t}_n).$$

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$E(\lbrace W_i \rbrace) = \sum_{n=1}^{N} f(\mathbf{y}(\mathbf{x}_n, \lbrace W_i \rbrace), \mathbf{x}_n, \mathbf{t}_n).$$

Input	Hidden	Output
layer	layer	layer
x —	→	y

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$E(\lbrace W_i \rbrace) = \sum_{n=1}^{N} f(\mathbf{y}(\mathbf{x}_n, \lbrace W_i \rbrace), \mathbf{x}_n, \mathbf{t}_n).$$

Input Hidden Output layer layer layer

layer

Training:

forward propagation:

$$\mathbf{z}_1 = \boldsymbol{\sigma}(W_1\mathbf{x}),$$

$$\mathbf{z}_2 = \sigma(W_2\mathbf{z}_1), ...,$$

$$\mathbf{y} = \boldsymbol{\sigma}(W_L \mathbf{z}_{L-1})$$

Goal: Identify weights $W_1, W_2, ..., W_L$ to minimize model error

$$E(\lbrace W_i \rbrace) = \sum_{n=1}^{N} f(\mathbf{y}(\mathbf{x}_n, \lbrace W_i \rbrace), \mathbf{x}_n, \mathbf{t}_n).$$

Training:

 $\begin{array}{l} \rhd \;\; \mathsf{forward} \\ \mathsf{propagation:} \\ \mathsf{z_1} = \sigma(W_1 \mathsf{x}), \\ \mathsf{z_2} = \sigma(W_2 \mathsf{z_1}), \; ..., \\ \mathsf{y} = \sigma(W_L \mathsf{z}_{L-1}) \end{array}$

back propagation: update $\{W_i\}$ with $\nabla E(\{W_i\})$

Goal: Develop true forward and back propagation algorithms for hNMF.

Regard the A matrices as independent variables, determine the S matrices from the A matrices.

- ▶ Regard the A matrices as independent variables, determine the S matrices from the A matrices.
- ightharpoonup Define $q(X,A) := \operatorname{argmin}_{S \geq 0} \|X AS\|_F^2$ (least-squares).

- Regard the A matrices as independent variables, determine the S matrices from the A matrices.
- \triangleright Define $q(X, A) := \operatorname{argmin}_{S \ge 0} ||X AS||_F^2$ (least-squares).
- ightharpoonup Pin the values of S to those of A by recursively setting $S^{(\ell)}:=q(S^{(\ell-1)},A^{(\ell)}).$

- Regard the A matrices as independent variables, determine the S matrices from the A matrices.
- ho Define $q(X, A) := \operatorname{argmin}_{S \geq 0} ||X AS||_F^2$ (least-squares).
- ho Pin the values of S to those of A by recursively setting $S^{(\ell)} := q(S^{(\ell-1)}, A^{(\ell)}).$

Goal: Develop true forward and back propagation algorithms for hNMF.

Training:

$$\begin{array}{c}
X \\
\hline
q(\cdot, A^{(0)})
\end{array}
\xrightarrow{S^{(0)}} q(\cdot, A^{(1)})$$

Goal: Develop true forward and back propagation algorithms for hNMF.

(X) $q(\cdot, A^{(0)})$ $q(\cdot, A^{(1)})$ $q(\cdot, A^{(1)})$

Training:

- ▷ forward propagation: $S^{(0)} = q(X, A^{(0)}),$ $S^{(1)} = q(S^{(0)}, A^{(1)}), ...,$ $S^{(L)} = q(S^{(L-1)}, A^{(L)})$
- ▷ back propagation: update $\{A^{(i)}\}$ with $\nabla E(\{A^{(i)}\})$

Least-squares Subroutine

▷ least-squares is a fundamental subroutine in forward-propagation

Least-squares Subroutine

▷ least-squares is a fundamental subroutine in forward-propagation

Least-squares Subroutine

▷ least-squares is a fundamental subroutine in forward-propagation

riangleright iterative projection methods can solve these problems

General Setup

General Setup

We are interested in solving highly overdetermined systems of equations, $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and $m \gg n$. Rows are denoted \mathbf{a}_i^T .

General Setup

We are interested in solving highly overdetermined systems of equations, $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and $m \gg n$. Rows are denoted \mathbf{a}_i^T .

If $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is nonempty, these methods construct an approximation to a solution:

1. Randomized Kaczmarz Method

Applications:

1. Tomography (Algebraic Reconstruction Technique)

If $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is nonempty, these methods construct an approximation to a solution:

- 1. Randomized Kaczmarz Method
- 2. Motzkin's Method

Applications:

- 1. Tomography (Algebraic Reconstruction Technique)
- 2. Linear programming

If $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}\$ is nonempty, these methods construct an approximation to a solution:

- 1. Randomized Kaczmarz Method
- Motzkin's Method
- 3. Sampling Kaczmarz-Motzkin Methods (SKM)

Applications:

2. Linear programming

Motzkin's Method

[Motzkin, Schoenberg 1954]

Motzkin's Method

[Motzkin, Schoenberg 1954]

Motzkin's Method

[Motzkin, Schoenberg 1954]

Our Hybrid Method (SKM)

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random among the rows of A.
- 2. From the β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|.$
- 3. Define

$$\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} - \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}.$$

4. Repeat.

Our Hybrid Method (SKM)

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random among the rows of A.
- 2. From the β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|.$
- 3. Define

$$\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} - \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}.$$

4. Repeat.

Our Hybrid Method (SKM)

Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random among the rows of A.
- 2. From the β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|.$
- 3. Define

$$\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} - \mathbf{a}_{i_k}^\mathsf{T} \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}.$$

4. Repeat.

Experimental Convergence

- $\triangleright \beta$: sample size
- ho A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

Experimental Convergence

- $\triangleright \beta$: sample size
- \triangleright A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

Experimental Convergence

- $\triangleright \beta$: sample size
- ho A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

Below are the convergence rates for the methods on a system, $A\mathbf{x} = \mathbf{b}$, which is consistent with unique solution \mathbf{x} , whose rows have been normalized to have unit norm.

▷ RK (Strohmer, Vershynin '09):

$$\mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2$$

Below are the convergence rates for the methods on a system, $A\mathbf{x} = \mathbf{b}$, which is consistent with unique solution \mathbf{x} , whose rows have been normalized to have unit norm.

▷ RK (Strohmer, Vershynin '09):

$$\mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2$$

$$\|\mathbf{x}_k - \mathbf{x}\|_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|_2^2$$

Below are the convergence rates for the methods on a system, $A\mathbf{x} = \mathbf{b}$, which is consistent with unique solution \mathbf{x} , whose rows have been normalized to have unit norm.

▷ RK (Strohmer, Vershynin '09):

$$\mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2$$

$$\|\mathbf{x}_k - \mathbf{x}\|_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|_2^2$$

▷ SKM (DeLoera, H., Needell '17):

$$\mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|_2^2$$

Below are the convergence rates for the methods on a system, $A\mathbf{x} = \mathbf{b}$, which is consistent with unique solution \mathbf{x} , whose rows have been normalized to have unit norm.

▷ RK (Strohmer, Vershynin '09):

$$\mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2$$

$$\|\mathbf{x}_k - \mathbf{x}\|_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|_2^2$$

▷ SKM (DeLoera, H., Needell '17):

$$\mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|_2^2 \le \left(1 - \frac{\sigma_{\min}^2(A)}{m}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|_2^2$$

Why are these all the same?

A Pathological Example

Structure of the Residual

Several works have used sparsity of the residual to improve the convergence rate of greedy methods.

[De Loera, H., Needell '17], [Bai, Wu '18], [Du, Gao '19]

Structure of the Residual

Several works have used sparsity of the residual to improve the convergence rate of greedy methods.

[De Loera, H., Needell '17], [Bai, Wu '18], [Du, Gao '19]

However, not much sparsity can be expected in most cases. Instead, we'd like to use <u>dynamic range</u> of the residual to guarantee faster convergence.

$$\gamma_k := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \lVert A_\tau \mathbf{x}_k - \mathbf{b}_\tau \rVert_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \lVert A_\tau \mathbf{x}_k - \mathbf{b}_\tau \rVert_\infty^2}$$

Accelerated Convergence Rate

Theorem (H. - Ma 2019)

Let A be normalized so $\|\mathbf{a}_i\|_2 = 1$ for all rows i = 1,...,m. If the system $A\mathbf{x} = \mathbf{b}$ is consistent with the unique solution \mathbf{x}^* then the SKM method converges at least linearly in expectation and the rate depends on the dynamic range of the random sample of rows of A, τ_j . Precisely, in the j+1st iteration of SKM, we have

$$\mathbb{E}_{\tau_j} \|\mathbf{x}_{j+1} - \mathbf{x}^*\|_2^2 \le \left(1 - \frac{\beta \sigma_{\min}^2(A)}{\gamma_j m}\right) \|\mathbf{x}_j - \mathbf{x}^*\|_2^2,$$

$$\textit{where } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \lVert A_\tau \mathbf{x}_j - \mathbf{b}_\tau \rVert_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \lVert A_\tau \mathbf{x}_j - \mathbf{b}_\tau \rVert_\infty^2}.$$

Accelerated Convergence Rate

- \triangleright A is 50000 imes 100 Gaussian matrix, consistent system
- \triangleright bound uses dynamic range of sample of β rows

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_\infty^2}.$$

$$1 \le \gamma_j \le \beta$$

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_\infty^2}.$$

$$1 \le \gamma_j \le \beta$$

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_\infty^2}.$$

$$1 \le \gamma_j \le \beta$$

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_\infty^2}.$$

$$1 \leq \gamma_j \leq \beta$$

$$\mathbb{E}_{\tau_k} \| \mathbf{x}_k - \mathbf{x}^* \|_2^2 \le \alpha \| \mathbf{x}_{k-1} - \mathbf{x}^* \|_2^2$$

	Previous:
RK	$lpha = 1 - rac{\sigma_{\min}^2(A)}{m}$
SKM	$\alpha = 1 - \frac{\sigma_{\min}^2(A)}{m}$
MM	$1 - \frac{\sigma_{\min}^2(A)}{4} \le \alpha \le 1 - \frac{\sigma_{\min}^2(A)}{m}$

[H., Needell 2019]

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|^{A_\tau \mathbf{x}_j - \mathbf{b}_\tau}\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|^{A_\tau \mathbf{x}_j - \mathbf{b}_\tau}\|_\infty^2}.$$

$$1 \leq \gamma_i \leq \beta$$

$$\mathbb{E}_{\tau_k} \| \mathbf{x}_k - \mathbf{x}^* \|_2^2 \le \alpha \| \mathbf{x}_{k-1} - \mathbf{x}^* \|_2^2$$

	Previous:	Current:
RK	$\alpha = 1 - \frac{\sigma_{\min}^2(A)}{m}$	$\alpha = 1 - \frac{\sigma_{\min}^2(A)}{m}$
SKM	$lpha = 1 - rac{\sigma_{\min}^2(A)}{m}$	$1 - \frac{\beta \sigma_{\min}^2(A)}{m} \le \alpha \le 1 - \frac{\sigma_{\min}^2(A)}{m}$
MM	$1 - \frac{\sigma_{\min}^2(A)}{4} \le \alpha \le 1 - \frac{\sigma_{\min}^2(A)}{m}$	$1 - \sigma_{\min}^2(A) \le \alpha \le 1 - \frac{\sigma_{\min}^2(A)}{m}$

[H., Needell 2019], [H., Ma 2019]

$$\text{Recall } \gamma_j := \frac{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}{\sum_{\tau \in \binom{[m]}{\beta}} \|A_\tau \mathbf{x}_j - \mathbf{b}_\tau\|_2^2}.$$

$$1 \le \gamma_j \le \beta$$

ightarrow nontrivial bounds on γ_k for Gaussian and average consensus systems

Now can we determine the optimal β ?

Now can we determine the optimal β ?

Roughly, if we know the value of γ_j , we can (just) do it.

Now can we determine the optimal β ?

Roughly, if we know the value of γ_j , we can (just) do it.

Compare:

▷ hNMF (sequential NMF)

Compare:

- ⊳ hNMF (sequential NMF)
- ▷ Deep NMF [Flenner, Hunter '18]

Compare:

- ▷ hNMF (sequential NMF)
- ▷ Deep NMF [Flenner, Hunter '18]
- ▷ Neural NMF

Applications

Experimental results: synthetic data

Experimental results: synthetic data

 \triangleright unsupervised reconstruction with two-layer structure $(k^{(0)}=9, k^{(1)}=4)$

Experimental results: synthetic data

 \triangleright unsupervised reconstruction with two-layer structure $(k^{(0)} = 9, k^{(1)} = 4)$

MyLymeData Takeaways

MyLymeData Takeaways

bulls-eye rash (diagnosing symptoms) topic does not seem to persist for smaller number of topics

unwell and well patients have very different presentation of bulls-eye rash symptom in topics

MyLymeData Takeaways

bulls-eye rash (diagnosing symptoms) topic does not seem to persist for smaller number of topics

□ unwell and well patients have very different presentation of bulls-eye
 rash symptom in topics

 ▷ patients unwell because lacking bulls-eye rash for diagnosis or indicative of different disease pathway?

Conclusions

Conclusions

▷ hNMF model can be implemented as a feed-forward neural network

- ▷ presented our method Neural NMF
- described family of algorithms which can solve fundamental least-squares subroutine
- ▷ presented accelerated convergence analysis for SKM

▷ applied Neural NMF to synthetic data and MyLymeData

Related Current/Future Work

Nonnegative Tensor Decomposition (NTD):

- ♭ for dynamic topic modeling (stemming from WiSDM 2019)
- ▷ hierarchical NTD (joint with Needell, Vendrow*)
- ▷ robustness of nonnegative CANDECOMP/PARAFAC decomposition (joint with Kassab*)
- ▶ Applications: NBA data (joint with Liu*), temporal political data

Iterative Projection Methods:

- ▷ corruption robust methods (joint with Needell, Rebrova, Swartworth*)
- ▷ AutoML hyperparameter selection (joint with Heiner*)
- ▶ Applications: linear network dynamics problems

^{*} denotes undergraduate collaborator, • denotes graduate collaborator

Other Unrelated Work

Combinatorial Methods:

- ▷ Applications: metagenomic binning

Asynchronous Compressed Sensing:

- ▷ Bayesian asynchronous methods (joint with Needell, Rahnavard, Zaeemzadeh)
- ▷ convergence analysis of IHT variants
- ▷ Sparse RK

Thanks for listening!

Questions?

- S. Agmon. The relaxation method for linear inequalities. <u>Canadian J. Math.</u>, 6:382–392, 1954.
- [2] Z. Bai and W. Wu. On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput., 40(1):A592–A606, 2018.
- [3] A. Cichocki and R. Zdunek. Multilayer nonnegative matrix factorisation. Electron. Lett., 42(16):947, 2006.
- [4] J. A. De Loera, J. Haddock, and D. Needell. A sampling Kaczmarz-Motzkin algorithm for linear feasibility. SIAM J. Sci. Comput., 39(5):S66–S87, 2017.
- [5] K. Du and H. Gao. A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm. Numer. Math. - Theory Me., 12(2):627–639, 2019.
- [6] M. Gao, J. Haddock, D. Molitor, D. Needell, E. Sadovnik, T. Will, and R. Zhang. Neural nonnegative matrix factorization for hierarchical multilayer topic modeling. In Proc. Interational Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2019.
- [7] J. Haddock and A. Ma. Greed works: An improved analysis of sampling Kaczmarz-Motzkin. 2019. Submitted.
- [8] J. Haddock and D. Needell. On Motzkins method for inconsistent linear systems. BIT, 59(2):387–401, 2019.
- [9] S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. <u>Bull. Int. Acad. Polon. Sci. Lett. Ser. A.</u> pages 335–357, 1937.
- [10] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
- [11] T. S. Motzkin and I. J. Schoenberg. The relaxation method for linear inequalities. Canadian J. Math., 6:393–404, 1954.
- [12] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994.
- [13] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl., 15:262–278, 2009.

Experimental results: synthetic data

 \triangleright semisupervised reconstruction (40% labels) with three-layer structure ($k^{(0)}=9, k^{(1)}=4, k^{(2)}=2)$

Experimental results: synthetic data

ightharpoonup semisupervised reconstruction (40% labels) with three-layer structure ($k^{(0)}=9, k^{(1)}=4, k^{(2)}=2$)

Experimental results: synthetic data

 $\textbf{Table 1:} \ \ \mathsf{Reconstruction} \ \ \mathsf{error} \ / \ \mathsf{classification} \ \ \mathsf{accuracy}$

	Layers	Hier. NMF	Deep NMF	Neural NMF
Unsuper.	1	0.053	0.031	0.029
	2	0.399	0.414	0.310
	3	0.860	0.838	0.492
Semisuper.	1	0.049 / 0.933	0.031 / 0.947	0.042 / 1
	2	0.374 / 0.926	0.394 / 0.911	0.305 / 1
	3	0.676 / 0.930	0.733 / 0.930	0.496 / 0.990
Supervised	1	0.052 / 0.960	0.042 / 0.962	0.042 / 1
	2	0.311 / 0.984	0.310 / 0.984	0.307 / 1
	3	0.495 / 1	0.494 / 1	0.498 / 1

Experimental results: 20 Newsgroups data

Experimental Convergence

- $\triangleright \beta$: sample size
- \triangleright A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

Experimental Convergence

- $\triangleright \beta$: sample size
- ho A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

Experimental Convergence

- $\triangleright \beta$: sample size
- \triangleright A is 50000 imes 100 Gaussian matrix, consistent system
- ▷ 'faster' convergence for larger sample size

- ▷ [Flenner, Hunter '18]
 - introduces nonlinear pooling operator after each layer
 - introduces multiplicative updates method meant to backpropagate

- ▷ [Flenner, Hunter '18]
 - introduces nonlinear pooling operator after each layer
 - introduces multiplicative updates method meant to backpropagate
- ▷ [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
 - relaxes some of nonnegativity constraints in hNMF

- ▷ [Flenner, Hunter '18]
 - introduces nonlinear pooling operator after each layer
 - introduces multiplicative updates method meant to backpropagate
- ▷ [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
 - relaxes some of nonnegativity constraints in hNMF
- ▷ [Le Roux, Hershey, Weninger '15]
 - introduces NMF backpropagation algorithm with "unfolding" (no hierarchy)

- ▷ [Flenner, Hunter '18]
 - introduces nonlinear pooling operator after each layer
 - introduces multiplicative updates method meant to backpropagate
- ▷ [Trigeorgis, Bousmalis, Zafeiriou, Schuller '16]
 - relaxes some of nonnegativity constraints in hNMF
- ▷ [Le Roux, Hershey, Weninger '15]
 - introduces NMF backpropagation algorithm with "unfolding" (no hierarchy)
- ⊳ [Sun, Nasrabadi, Tran '17]
 - similar method lacking nonnegativity constraints

Block Kaczmarz

Bound on γ_i

$$\gamma_k \geq \frac{\beta}{m} \sigma_{\min}^2(A)$$
 when A is row-normalized