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Motivation

MyLymeData is a large collection of Lyme disease patient survey data
collected by LymeDisease.org (∼12,000 patients, 100s of questions)

• data is highly incomplete due to branching structure of surveys and
missing responses

• research questions of interest do not require individual entries

Question: Can we perform statistical inferences on imputed data?
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Main Question
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Sampling and Imputation Techniques

Uniform Sampling: Sample each entry with uniform probability p.

Structured Sampling: Sample zero and nonzero entries with p0 and p1.

Nuclear Norm Minimization (NNM):

min ‖X‖∗
s.t. Xij = Mij for all (i , j) ∈ Ω

`1-Regularized Nuclear Norm Minimization (`1-NNM):

min ‖X‖∗ + α‖XΩC ‖1

s.t. Xij = Mij for all (i , j) ∈ Ω
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Simple Inferences

Entrywise Mean

λ(M): mean of the entries of M

• Entrywise mean error:

Eλ = |λ(M̂)− λ(M)|.

Row Mean

µ(M): average row of M

• Normalized row mean error:

Eµ =
‖µ(M̂)− µ(M)‖2

‖µ(M)‖2
.

. original matrix, M

. recovered matrix, M̂
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Experimental Design - Synthetic Data

. 30× 30 rank 5 matrix generated as product of sparse matrices with
nonzero entries sampled uniformly from [0, 1]

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively

• `1 regularization parameter α is chosen in {0.05, 0.1, 0.2, . . . , 0.5} to

minimize matrix recovery error

. matrix recovery error and inference errors averaged over 10 trials

6



Experimental Design - Synthetic Data

. 30× 30 rank 5 matrix generated as product of sparse matrices with
nonzero entries sampled uniformly from [0, 1]

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively

• `1 regularization parameter α is chosen in {0.05, 0.1, 0.2, . . . , 0.5} to

minimize matrix recovery error

. matrix recovery error and inference errors averaged over 10 trials

6



Experimental Design - Synthetic Data

. 30× 30 rank 5 matrix generated as product of sparse matrices with
nonzero entries sampled uniformly from [0, 1]

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively

• `1 regularization parameter α is chosen in {0.05, 0.1, 0.2, . . . , 0.5} to

minimize matrix recovery error

. matrix recovery error and inference errors averaged over 10 trials

6



Experimental Design - Synthetic Data

. 30× 30 rank 5 matrix generated as product of sparse matrices with
nonzero entries sampled uniformly from [0, 1]

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively

• `1 regularization parameter α is chosen in {0.05, 0.1, 0.2, . . . , 0.5} to

minimize matrix recovery error

. matrix recovery error and inference errors averaged over 10 trials

6



Experimental Design - Synthetic Data

. 30× 30 rank 5 matrix generated as product of sparse matrices with
nonzero entries sampled uniformly from [0, 1]

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively

• `1 regularization parameter α is chosen in {0.05, 0.1, 0.2, . . . , 0.5} to

minimize matrix recovery error

. matrix recovery error and inference errors averaged over 10 trials

6



Synthetic Data

. p0 = 0

. ω is proportion of entries sampled
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Synthetic Data

. p0 = 0.2

. ω is proportion of entries sampled
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Synthetic Data

. p0 = 0.4

. ω is proportion of entries sampled
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Experimental Design - MyLymeData

. complete 30× 16 submatrix of MyLymeData

. each trial consists of sampling, completion, and inference on original
and completed matrices

• matrix is sampled via uniform sampling and structured sampling

(with listed p0), and completed with NNM and `1-NNM respectively
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MyLyme Data

. p0 = 0

. ω is proportion of entries sampled
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MyLyme Data

. p0 = 0.2

. ω is proportion of entries sampled
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MyLyme Data

. p0 = 0.4

. ω is proportion of entries sampled
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Preliminary Error Bounds

Inference Error Bound

Entrywise Mean |λ(M)− λ(M̂)| ≤ (mn)
− 1

q ‖M− M̂‖q

Row Mean ‖µ(M)− µ(M̂)‖q ≤
(

nq−1

m

) 1
q ‖M− M̂‖q

. M ∈ Rm×n

. recovered matrix, M̂
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Entrywise Mean Simulation
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Row Mean Simulation
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Conclusions and Future Directions

• inference errors can be smaller than the associated matrix recovery
errors

• structured sampling and `1-NNM often results in better matrix and
inference recovery than uniform sampling and NNM

• develop exact recovery guarantees for `1-NNM on matrices with
observed entries selected via structured sampling
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Thanks!

Questions?
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