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» Learn trends in high-dimensional data

Understand symptom trends and shared patient experiences

automatically.
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Can we tell how the resulting parts/topics are related?

How do we choose the number of topics or parts to learn?

Hierarchical matrix factorization and tensor
decomposition topic models!
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» Nonnegative Matrix Factorization (NMF)

Model: Given nonnegative data X, compute nonnegative A and S of
lower rank so that

X ≈ AS.

X A
S

Y B S

≈

≈

n1 × n2 n1 × r

r × n2

k × n2 k × r
r × n2

. Employed for dimensionality-reduction and topic modeling

. Often formulated as

min
A∈Rn1×r

≥0
,S∈Rr×n2

≥0

‖X− AS‖2
F or min

A∈Rn1×r

≥0
,S∈Rr×n2

≥0

D(X‖AS).1

. non-convex optimization problems

Lee, Daniel D., and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix factorization.” Nature 401.6755
(1999): 788-791.
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» Nonnegative CANDECOMP/PARAFAC (CP)
decomposition (NCPD)

X X1

X>2

x (1)
1

x (2)
1

x (1)
r

x (2)
r≈ = + · · ·+

X3 x (3)
1 x (3)

r

X X1

X>2

x (1)
1

x (2)
1

x (1)
r

x (2)
r≈ = + · · ·+

X3 x (3)
1 x (3)

r

Carroll, J. Douglas, and Jih-Jie Chang. “Analysis of individual differences in multidimensional scaling via an N-way generalization of
“Eckart-Young” decomposition.” Psychometrika 35.3 (1970): 283-319.
Harshman, Richard A. “Foundations of the PARAFAC procedure: Models and conditions for an” explanatory” multimodal factor analysis.”
(1970): 1-84.

[8/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Nonnegative CANDECOMP/PARAFAC (CP)
decomposition (NCPD)

X X1

X>2

x (1)
1

x (2)
1

x (1)
r

x (2)
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X3 x (3)
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r

. formulated as minXi≥0 ‖X− [[X1,X2, · · · ,Xk ]]‖2
F where

[[X1,X2, · · · ,Xk ]] ≡
r∑

j=1

x (1)
j ⊗ x (2)

j ⊗ · · · ⊗ x (k)
j
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» Hierarchical NMF

Model: Sequentially factorize

. k(`): supertopics collecting k(`−1) subtopics

. provides relationship between data matrix modes and k(`) topics

Cichocki, Andrzej, and Rafal Zdunek. “Multilayer nonnegative matrix factorisation.” ELECTRONICS LETTERS-IEE 42.16 (2006):
947.
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» Hierarchical NMF

. elucidates the hierarchical
relationships of learned topics

. no need to choose a fixed model
rank (number of topics)
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Hierarchical Models
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» Hierarchical Tensor Decompositions
How do we generalize HNMF to a higher-order tensor model?

. Vasilescu, M. Alex O., and Eric Kim. “Compositional hierarchical tensor
factorization: Representing hierarchical intrinsic and extrinsic causal factors.”
arXiv preprint arXiv:1911.04180 (2019).

. Song, Le, et al. “Hierarchical tensor decomposition of latent tree graphical
models.” International Conference on Machine Learning. PMLR, 2013.

. Grasedyck, Lars. “Hierarchical singular value decomposition of tensors.” SIAM
Journal on Matrix Analysis and Applications 31.4 (2010): 2029-2054.

. Cichocki, Andrzej, Rafal Zdunek, and Shun-ichi Amari. “Hierarchical ALS
algorithms for nonnegative matrix and 3D tensor factorization.” International
Conference on Independent Component Analysis and Signal Separation.
Springer, Berlin, Heidelberg, 2007.

Results depend upon hyperparameter choice (mode).

* Vendrow, Joshua, Jamie Haddock, and Deanna Needell. “Neural nonnegative
CP decomposition for hierarchical tensor analysis.” 2021 55th Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2021.

Not a single hierarchical relationship, good training method.

* Vendrow, Joshua, Jamie Haddock, and Deanna Needell. “A Generalized
Hierarchical Nonnegative Tensor Decomposition.” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022.

Single hierarchical relationship, naive training method.
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» Hierarchical NCPD Model (Take 1)

Learn an initial rank-r NCPD model,

X ≈ [[X1,X2, · · · ,Xk ]]

and apply a hierarchical NMF model independently to each factor matrix,

Xi ≈ A(0)
i A(1)

i · · ·A
(l)
i S(l)

i .

Vendrow, H., Needell. “Neural nonnegative CP decomposition for hierarchical tensor analysis.” 2021 55th Asilomar Conference on
Signals, Systems, and Computers. IEEE, 2021.
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» Hierarchical NCPD Model (Take 1)

. can extend good training method for HNMF (Neural NMF) →
Neural NCPD (later in this talk!)

. Different hierarchy across tensor modes. :(

Vendrow, H., Needell. “Neural nonnegative CP decomposition for hierarchical tensor analysis.” 2021 55th Asilomar Conference on
Signals, Systems, and Computers. IEEE, 2021.
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» Multi-HNTF Model (Take 2)
This model learns

X ≈ [[X (0)
1 ,X (0)

2 , · · · ,X (0)
k ]]

≈ [[X (1)
1 ,X (1)

2 , · · · ,X (1)
k ]] ≈ · · ·

≈ [[X (L−1)
1 ,X (L−1)

2 , · · · ,X (L−1)
k ]]

where
X (`+1)

j = X (`)
j W (`),

and W (`) ∈ Rr (`−1)×r (`)

≥0 .

A single hierarchical relationship for all modes!

Vendrow, H., Needell. “A Generalized Hierarchical Nonnegative Tensor Decomposition.” IEEE International Conference on
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» Training Process

1: procedure Multi-HNTF(X)

2: {X (0)
i }ki=1 ← NCPD(X, r0)

3: for ` = 0 . . .L do
4: W (`) ← argmin

W∈Rr`×r`+1
+

‖X− [[X (`)
1 W , . . . ,X (`)

k W ]]‖
5: for i = 0 . . . k do
6: X (`+1)

i = X (`)
i W (`)

. Can be approximated via NMF method on each mode with
averaging of learned W matrix across modes.

. Could/should also be trained in a neural network framework.
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Experiments
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» Synthetic Tensor
The table lists relative reconstruction
errors on the tensor on the left for mod-
els learned with 7-4-2 topic structure.
Below, we visualize the Multi-HNTF
learned approximations for a synthetic
tensor with 7-3 topic structure.

Projections of tensor approximation at
each layer of Multi-HNTF.

Relative reconstruction error.

Method r0 = 7 r1 = 4 r2 = 2
Multi-HNTF 0.454 0.548 0.721

Neural HNCPD [Vendrow, et. al.] 0.454 0.508 0.714
Standard HNCPD [Vendrow, et. al.] 0.454 0.612 0.892

HNTF-1 [Cichocki, et. al.] 0.454 0.576 0.781
HNTF-2 [Cichocki, et. al.] 0.454 0.587 0.765
HNTF-3 [Cichocki, et. al.] 0.454 0.560 0.747

[18/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Synthetic Tensor
The table lists relative reconstruction
errors on the tensor on the left for mod-
els learned with 7-4-2 topic structure.
Below, we visualize the Multi-HNTF
learned approximations for a synthetic
tensor with 7-3 topic structure.

Projections of tensor approximation at
each layer of Multi-HNTF.

Relative reconstruction error.

Method r0 = 7 r1 = 4 r2 = 2
Multi-HNTF 0.454 0.548 0.721

Neural HNCPD [Vendrow, et. al.] 0.454 0.508 0.714
Standard HNCPD [Vendrow, et. al.] 0.454 0.612 0.892

HNTF-1 [Cichocki, et. al.] 0.454 0.576 0.781
HNTF-2 [Cichocki, et. al.] 0.454 0.587 0.765
HNTF-3 [Cichocki, et. al.] 0.454 0.560 0.747 [18/30]

Jamie Haddock



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Synthetic Tensor
The table lists relative reconstruction
errors on the tensor on the left for mod-
els learned with 7-4-2 topic structure.
Below, we visualize the Multi-HNTF
learned approximations for a synthetic
tensor with 7-3 topic structure.

Projections of tensor approximation at
each layer of Multi-HNTF.

Relative reconstruction error.

Method r0 = 7 r1 = 4 r2 = 2
Multi-HNTF 0.454 0.548 0.721

Neural HNCPD [Vendrow, et. al.] 0.454 0.508 0.714
Standard HNCPD [Vendrow, et. al.] 0.454 0.612 0.892

HNTF-1 [Cichocki, et. al.] 0.454 0.576 0.781
HNTF-2 [Cichocki, et. al.] 0.454 0.587 0.765
HNTF-3 [Cichocki, et. al.] 0.454 0.560 0.747 [18/30]

Jamie Haddock



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Political Twitter Data

Method r0 = 8 r1 = 4 r2 = 2
Multi-HNTF 0.834 0.887 0.920

Neural HNCPD [Vendrow, et. al.] 0.834 0.883 0.918
Standard HNCPD [Vendrow, et. al.] 0.834 0.889 0.919

Standard NCPD 0.834 0.931 0.950
HNTF-1 [Cichocki, et. al.] 0.834 0.890 0.927
HNTF-2 [Cichocki, et. al.] 0.834 0.909 0.956
HNTF-3 [Cichocki, et. al.] 0.834 0.895 0.942
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» 20 Newsgroups Data

Reconstruction loss and classification
accuracy at the second layer of two
layer Multi-HNTF and HNMF on the
20 newsgroup data set.

Recon Loss Accuracy
Method Unsup. Sup. Unsup. Sup.

Multi-HNTF 30.81 30.91 0.516 0.737
HNMF 30.82 31.45 0.507 0.636
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Backpropagation
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» Hierarchical Tensor Decompositions
Hierarchical NCPD

Multi-HNTF

Devastating error propagation through layers!
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» Reminder
Neural Network: Learn weights W (1),W (2), ...,W (L) to minimize model
error

E ({W (i)}) =
N∑

n=1

f (y(xn, {W (i)}), xn, tn).

x (1)

x (2)

x (3)

x (4)

y (1)

y (2)

y (3)

Hidden
layer

Input
layer

Output
layer

Training:

. forward
propagation:
z (1) = σ(W (1)x),
z (2) = σ(W (2)z1),
...,
y = σ(W (L)z (L−1))

. back propagation:
update {W (i)} with
∇E ({W (i)})

[23/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Reminder

Neural Network: Learn weights W (1),W (2), ...,W (L) to minimize model
error

E ({W (i)}) =
N∑

n=1

f (y(xn, {W (i)}), xn, tn).

x y

Hidden
layer

Input
layer

Output
layer

Training:

. forward
propagation:
z (1) = σ(W (1)x),
z (2) = σ(W (2)z1),
...,
y = σ(W (L)z (L−1))

. back propagation:
update {W (i)} with
∇E ({W (i)})

[23/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Reminder

Neural Network: Learn weights W (1),W (2), ...,W (L) to minimize model
error

E ({W (i)}) =
N∑

n=1

f (y(xn, {W (i)}), xn, tn).

x z (1) y

σ(W (1)·) σ(W (2)·)

Hidden
layer

Input
layer

Output
layer

Training:

. forward
propagation:
z (1) = σ(W (1)x),
z (2) = σ(W (2)z1),
...,
y = σ(W (L)z (L−1))

. back propagation:
update {W (i)} with
∇E ({W (i)})

[23/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Reminder

Neural Network: Learn weights W (1),W (2), ...,W (L) to minimize model
error

E ({W (i)}) =
N∑

n=1

f (y(xn, {W (i)}), xn, tn).

x z (1) y

σ(W (1)·) σ(W (2)·)

Hidden
layer

Input
layer

Output
layer

Training:

. forward
propagation:
z (1) = σ(W (1)x),
z (2) = σ(W (2)z1),
...,
y = σ(W (L)z (L−1))

. back propagation:
update {W (i)} with
∇E ({W (i)})

[23/30]



Motivation Introduction Hierarchical Models Experiments Backpropagation Conclusions

» Training via backpropagation
Neural NMF: Forward and back propagation algorithms for hNMF.

. Regard the A matrices as independent variables, determine the S
matrices from the A matrices.

. Define q(X ,A) := argminS≥0‖X − AS‖2
F (least-squares).

. Pin the values of S to those of A by recursively setting
S (`) := q(S (`−1),A(`)).

X S (0) S (1)

q(·,A(0)) q(·,A(1))

Gao, Mengdi, et al. “Neural nonnegative matrix factorization for hierarchical multilayer topic modeling.” 2019 IEEE 8th
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2019.

Related work: [Flenner, Hunter 2018], [Trigeorgis, Bousmalis, Zafeiriou, Schuller 2016], [Le Roux, Hershey, Weninger 2015], [Sun,
Nasrabadi, Tran 2017]
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. forward propagation:
S (0) = q(X ,A(0)),
S (1) = q(S (0),A(1)), ...,
S (L) = q(S (L−1),A(L))

. back propagation: update
{A(i)} with ∇E ({A(i)})

Apply this approach to each mode of HNCPD!
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» Neural NCPD
Train independent neural NMF models for each mode of tensor from

fixed NCPD factor matrices.

Vendrow, Joshua, Jamie Haddock, and Deanna Needell. “Neural nonnegative CP decomposition for hierarchical tensor analysis.”
2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021.
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» Gradient Calculation

Theorem-ish [Will, Zhang, Sadovnik, Gao, Vendrow, H., Molitor, Needell, 22+]

Given knowledge of the support of q(A,X ), the gradient ∇Aq(A,X ) has a
closed-form expression almost everywhere in the space of real-valued matrix pairs.
This gradient expression is inherited from unconstrained least-squares.

A(0)

X q(· , · )

A(1)

q(· , · ) S(L)S(0) · · ·

A(L)

q(· , · )S(L−1) Lf ( · )
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each layer of Multi-HNTF.

Relative reconstruction error.

Method r0 = 7 r1 = 4 r2 = 2
Multi-HNTF 0.454 0.548 0.721

Neural HNCPD [Vendrow, et. al.] 0.454 0.508 0.714
Standard HNCPD [Vendrow, et. al.] 0.454 0.612 0.892

HNTF-1 [Cichocki, et. al.] 0.454 0.576 0.781
HNTF-2 [Cichocki, et. al.] 0.454 0.587 0.765
HNTF-3 [Cichocki, et. al.] 0.454 0.560 0.747 [27/30]
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» Conclusions
. Multi-HNTF is a hierarchical tensor decomposition model that
generalizes hierarchical NMF.

. Model can be trained by your favorite NMF method with an
additional projection step.

. Neural NMF and Neural NCPD can help mitigate devastating error
propagation through multi-layer decomposition models.

. Develop backpropagation framework for Multi-HNTF and first layer
NCPD.
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» Thanks for listening! Questions?
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