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Two Problems

Linear Feasibility (LF): Given a rational
matrix A and a rational vector b, if Payp :=
{x: Ax < b} is nonempty, output a rational Ve Pap
X € Pap, otherwise output NO.

Minimum Norm Point (MNP): Given

_--~0 rational points p1,p2,....Ppm € R”"
defining P := conv(p1, p2, ..., Pm), Out-
put rational x = argmingcp [|q||*.




Iterative Projection Methods for LF

Motzkin’s Method (MM)

“vexg > On Motzkin's Method for Inconsistent Linear
Systems (joint with D. Needell)
https://arxiv.org/abs/1802.03126

Randomized Kaczmarz (RK) Method

> Randomized Projection Methods for Corrupted
“eX0 Linear Systems (joint with D. Needell)
https://arxiv.org/abs/1803.08114

Sampling Kaczmarz-Motzkin (SKM) Methods

> A Sampling Kaczmarz-Motzkin Algorithm for
Linear Feasibility (joint with J. A. De Loera
“exp  and D. Needell)
SIAM Journal on Scientific Computing, 2017
https://arxiv.org/abs/1605.01418



Wolfe’'s Combinatorial Methods for MNP

> The Minimum Euclidean-Norm Point on
a Convex Polytope: Wolfe's
Combinatorial Algorithm is Exponential
(joint J. A. De Loera and L. Rademacher)

STOC, 2018
https://arxiv.org/abs/1710.02608




Applications and Connections

LF: MNP:
> linear programming > submodular function
> support vector machine minimization
> linear equations > colorful linear programming

Theorem (De Loera, H., Rademacher '17)

LF reduces to MNP on a simplex in strongly-polynomial time.
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Minimum Norm Point in Polytope

We are interested in solving the problem (MNP(P)):
min ||x]|2
xeP

where P is a polytope, and determining the minimum dimension face, F,
which achieves distance ||x||2.

Reminder: A polytope, P, is the convex hull of points p1, p2,---, Pm,

P = {Zx\;p; : Z)\,- =1\ >0foralli=1,2,..., m}.
i=1 i=1
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Qe

> can be solved via interior-point methods T 7
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Applications

e arbitrary polytope projection

e nearest point problem for transportation polytopes
e subroutine in colorful linear programming

e subroutine in submodular function minimization

e machine learning - vision, large-scale learning

e compute distance to polytope
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Applications

Theorem (De Loera, H., Rademacher '17)
Linear programming reduces to distance to a simplex in
vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists
then this gives a strongly-polynomial method for LP.

It was previously known that linear programming reduces to MNP on a
polytope in weakly-polynomial time [Fujishige, Hayashi, Isotani '06].



Theorem (De Loera, H., Rademacher '17)

There exists a family of polytopes on which Wolfe's method requires
exponential time to compute the MNP.
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Wolfe’s Optimality Condition

Theorem (Wolfe '74)
Let P = conv(p1, P2, ...,Pm). Thenx € P is MNP(P) if and only if

x"p; > ||x|I3 for all j =1,2,...,m.
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Wolfe’s Optimality Condition

Theorem (Wolfe '74)
Let P = conv(p1, P2, -..,Pm). Thenx € P is MNP(P) if and only if

prJ- > ||x||3 for all j =1,2,...,m.

fyxTy =[x}

11



Wolfe’s Method



Philip Wolfe

e Frank-Wolfe method
e Dantzig-Wolfe decomposition

e simplex method for quadratic
programming

12



Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress
towards the quadratic solution.
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Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress
towards the quadratic solution.

Def: An affinely independent set of points @ = {q1,q>, ...,qx} is a
corral if MNP(aff(Q)) € relint(conv(Q)).

°—@—° q1 @ q2

q1 q2

(0]
[}
0] a3
qi 92 %
[ ]
(0]

Note: Singletons are corrals.
Note: There is a corral in P whose convex hull contains MNP(P). 13
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Wolfe’s method : combinatorial method for computing projection onto
a vertex-representation polytope (any dimension, any
number of points)
- pivots between corrals which may contain MNP(P)
- projects onto affine hull of sets to check whether a corral

- optimality criterion checks if correct corral
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Sketch of Method

xeP= {p17p27 ~--7pm}

C={x}
while x is not MNP(P) pr=(0,2
pic{pcP:xTp<x|3} P2 =(3,0
C=Ccu{p;} p3 =(=2,1)
y = MNP(aff(C))
while y ¢ relint(conv(C)) s
z Zejori?y)%W”Z yH2 P3
C = C —{p;} where p;, z
are on different faces of o =
conv(C) 0
X=1z
y = MNP(aff(C))

X=y
return x
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Wolfe's Method

x =p; forsomei=1,2,...m \=e¢e;

¢ ={i}

while x # 0 and there exists p; with x"p; < ||x||3
c=cug)
a = agminl S ol y = S,

While a; <0 forsomei=1,2,...m

0 = min A)"'
i; <0 =

z="0y+(1-6)x
ie{j:0aj+(1-0))\ =0}
C=C-{i}

X=1z

solve x = PA for A

a = argmin|| > a;pill2, y = Za,p,
S ai=1 ieC
ieC

X=y
return x 16
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Initial: minnorm

Insertion: linopt (select p; minimizing x"p;), minnorm
e insertion rules have different benefits
e behavior depends on choice of insertion rule
e examples in which each insertion rule is better

e a dropped vertex may be readded
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Related Methods

> von Neumann's algorithm for linear programming
> Frank-Wolfe method for convex programming (and variants)

> Gilbert's procedure for quadratic programming

e projection onto simple convex hull
> Hanson-Lawson procedure for non-negative least-squares
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Previous Results

o # iterations < S°71i() with any rules (Wolfe '74)

e c-approximate solution in O(nM? /) iterations with linopt
insertion rule (Chakrabarty, Jain, Kothari '14)

e c-approximate solution in O(plog(1/€)) iterations with linopt
insertion rule (Lacoste-Julien, Jaggi '15)

> pseudo-polynomial complexity
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Exponential Behavior




Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's

method is at least exponential in the dimension and number of points
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Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's
method is at least exponential in the dimension and number of points
- dimension and number of points grow linearly

- number of corrals visited grows exponentially
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Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's

method is at least exponential in the dimension and number of points
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method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d -2
Instance: P(d — 2)
Points: 2d — 5
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Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's

method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d -2 +2 dim dim: d

Instance: P(d — 2) ) Instance: P(d)

Points: 2d — 5 +4 points Points: 2d — 1
P(1) == {1}
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Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe's

method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d -2 +2 dim dim: d
Instance: P(d — 2) ) Instance: P(d)
Points: 2d — 5 +4 points Points: 2d — 1
P(1) := {1}
'D(3) = {(1’ 0, 0)7 P3,qs, I3, 53}

21



Exponential Example: dim 3

k.
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Exponential Example: dim 3
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Exponential Example: dim 3
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Exponential Example

05, MNP(P(d — 2))
my—2 = [0 5o
Mg—2> = maxpep(d—2) IPll1
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Exponential Example

P(d—2) 0 0
3% 2 9t Mao 0, MNP(P(d — 2))
Pd)=] 305, "7 —(Maa+1) ||| Md-2 = [0G_2lloc
0 o2 Mg—2 + 2 My—2 = maxpep(a—2) [IP[l1
0 M= _(My,+3)
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Exponential Example

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion

rule on input P(d) where d = 2k — 1. Then the sequence of corrals,
C(d) has length 5 - 25—t — 4.
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Key Lemma: Sequence of Corrals
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Consider the execution of Wolfe's method with the minnorm insertion

rule on input P(d) where d = 2k — 1. Then the sequence of corrals,
C(d) has length 5 - 25— — 4,

Sequence of Corrals: dim 1 — dim 3
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Exponential Example

Theorem (De Loera, H., Rademacher '17)

Consider the execution of Wolfe's method with the minnorm insertion
rule on input P(d) where d = 2k — 1. Then the sequence of corrals,
C(d) has length 5 - 25— — 4,

Sequence of Corrals: dim 1 — dim 3

(1,0,0)
(17 07 0)p3
1 > P3ds3
qsr3
r3s3
(1, 07 0)I’3S3

24



Adding Point to Corral

Lemma

Let P C RY be a finite set of points that is a corral. Let x be the
minimum norm point in aff P. Let q € span (x,span (P)L), and assume
a’x < min{||q||3, |x||3}. Then P U {q} is a corral. Moreover, the
minimum norm point 'y in conv(P U {q}) is a (strict) convex combination
of q and the minimum norm point of P: y = Ax + (1 — \)q with
A=qa’(q—x)/a—x|3.
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Let P C RY be a finite set of points that is a corral. Let x be the
minimum norm point in aff P. Let q € span (x,span (P)L), and assume
a’x < min{||q||3, |x||3}. Then P U {q} is a corral. Moreover, the
minimum norm point 'y in conv(P U {q}) is a (strict) convex combination
of q and the minimum norm point of P: y = Ax + (1 — \)q with
A=qa’(q—x)/a—x|3.

a corral with a point made from MNP and orthogonal

directions is still a corral
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Adding Point to Corral

a corral with a point made from MNP and orthogonal

directions is still a corral

span(x, span(P)*)

=~ AN 2
{x: qx = [|al|?} a:iax= x|}
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Orthogonal Corrals

Lemma

Let A C R? be a proper linear subspace. Let P C A be a non-empty
finite set. Let @ C A+ be another non-empty finite set. Let x be the
minimum norm point in aff P. Let'y be the minimum norm point in

aff Q. Let z be the minimum norm point in aff(P U Q). We have:

1. z is the minimum norm point in [x,y] and therefore
_ _ g — vl
z=Xx+(1— Ny with A\ = =T
2. Ifx #0 andy # 0, then z is a strict convex combination of x and'y.

3. Ifx#0,y=# 0 and P and Q are corrals, then P U Q is also a corral.
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Orthogonal Corrals

Lemma

Let A C R? be a proper linear subspace. Let P C A be a non-empty
finite set. Let @ C A+ be another non-empty finite set. Let x be the
minimum norm point in aff P. Let'y be the minimum norm point in

aff Q. Let z be the minimum norm point in aff(P U Q). We have:

1. z is the minimum norm point in [x,y] and therefore

B B ] S A
2=+ (1= Ny with A = ol

2. Ifx #0 andy # 0, then z is a strict convex combination of x and'y.
3. Ifx#0,y=# 0 and P and Q are corrals, then P U Q is also a corral.

the union of orthogonal corrals is still a corral
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Orthogonal Corrals

the union of orthogonal corrals is still a corral 28



Wolfe’s Criterion under Addition of Orthogonal Point

Lemma

For a point z define H, = {w € R" : w - z < ||2||3}. Suppose that we
have an instance of the minimum norm point problem in RY as follows:
Some points, P, live in a proper linear subspace A and some, Q, in A*.
Let x be the minimum norm point in aff P and y be the minimum norm
point in aff(P U Q). Then H N A = HyNA.
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Wolfe’s Criterion under Addition of Orthogonal Point

adding orthogonal points to the corral doesn’t create any

available points

Ty — [Ip12
{x:p'x=|pl%} {x:2'x = ||z}
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Sketch of Proof of Sequence C(d): C(d — 2)

;L'ri 1
Zq Ta o
P(d—2) 0 0
%2 F My_2 0;_,: MNP(P(d — 2))
P(d)=| 305, ™2 —(Mg2+1) Ma—2 = |05_s]lsc
0 T Mya+2 My_> = maxyep(a—2) I|pll1

0 T —(My—2+3)
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Sketch of Proof of Sequence C(d): C(d — 2)

Td-1

Zq rq
P(d-2) 0
%o;,z ::4:2 Md 2 0} _»: MNP(P(d —2))
2%-2 5. ~(Mia+t1) |- ma—2 = llog_2lleo
mg_s
0 i Mg_o+2 My—2 = maxpep(a—2) [IP[1
0 mi;2 (Md 5 +3
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h of Proof of Sequence C(d): O(d — 2)p
d
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h of Proof of Sequence C(

a corral with a point made from MNP and orthogonal

directions is still a corral 32



Sketch of Proof of Sequence C(d): p4aqq
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Sketch of Proof of Sequence C(d): p4aqq
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Sketch of Proof of Sequence C(d): qqrq
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Sketch of Proof of Sequence C(d): qqrq

34



h of Proof of Sequence C(d): rgsq
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h of Proof of Sequence C(d): rgsq
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h of Proof of Sequence C(d): C(d — 2)rqsq
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e the union of orthogonal corrals is still a corral
e adding orthogonal points to the corral doesn’t create

any available points 36
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Future Directions

1. Find an exponential example for Wolfe's method with 1inopt
insertion rule.

2. Search for types of polytopes where Wolfe's method is polynomial
(e.g. base polytopes).

3. Give an average (or smoothed) analysis of Wolfe's method.

37



UCDAVIS

MATHEMATICS



Thanks for attending!

[1]

2]

(3]

[4]

Questions?

|. Barany and S. Onn.
Colourful linear programming and its relatives.
Mathematics of Operations Research, 22(3):550-567, 1997.

D. Chakrabarty, P. Jain, and P. Kothari.
Provable submodular minimization using wolfe’s algorithm.
CoRR, abs/1411.0095, 2014.

J. A. De Loera, J. Haddock, and L. Rademacher.

The minimum Euclidean-norm point on a convex polytope:
Wolfes combinatorial algorithm is exponential.

2017.

S. Fujishige, T. Hayashi, and S. Isotani.

The minimum-norm-point algorithm applied to submodular

function minimization and linear programming.
Citeseer, 2006. 39




Example: minnorm < linopt

P = conv{(0.8,0.9,0), (1.5, —0.5,0), (—1, —1,2), (—4,1.5,2)} C R3
‘z

P3 g

40



Example: minnorm < linopt

Major Cycle Minor Cycle C Major Cycle Minor Cycle C

0 0 {p1} 0 0 {r1}

1 0 {p1.p2} 1 0 {p1.pa}

2 0 {p1.p2.p3} 2 0 {p1,Ps.P3}

3 0 {P1,p2,P3, P4} 2 1 {p1.p3}

3 1 {p1,pP2:Ps} 3 0 {p1,p3, P2}
4 0 {p1,P2,P3, P4}
4 1 {p1. P2, P4}
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Example: minnorm < linopt

Major Cycle Minor Cycle C Major Cycle Minor Cycle C

0 0 {p1} 0 0 {r1}

1 0 {p1.p2} 1 0 {p1.pa}

2 0 {p1.p2.p3} 2 0 {p1,Ps.P3}

3 0 {P1,p2,P3, P4} 2 1 {p1.p3}

3 1 {p1,pP2:Ps} 3 0 {p1,p3, P2}

4 0 {p1.P2,P3,P4}

minnorm < linopt 4 1 {P1.p2.Pa}

41
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