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Projection Algorithms for Convex

and Combinatorial Optimization



Two Problems

Linear Feasibility (LF): Given a rational

matrix A and a rational vector b, if PA,b :=

{x : Ax ≤ b} is nonempty, output a rational

x ∈ PA,b, otherwise output NO.
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Minimum Norm Point (MNP): Given

rational points p1,p2, . . . ,pm ∈ Rn

defining P := conv(p1,p2, ...,pm), out-

put rational x = argminq∈P ‖q‖2.
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Iterative Projection Methods for LF
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Motzkin’s Method (MM)

. On Motzkin’s Method for Inconsistent Linear

Systems (joint with D. Needell)

https://arxiv.org/abs/1802.03126

Randomized Kaczmarz (RK) Method

. Randomized Projection Methods for Corrupted

Linear Systems (joint with D. Needell)

https://arxiv.org/abs/1803.08114

Sampling Kaczmarz-Motzkin (SKM) Methods

. A Sampling Kaczmarz-Motzkin Algorithm for

Linear Feasibility (joint with J. A. De Loera

and D. Needell)

SIAM Journal on Scientific Computing, 2017

https://arxiv.org/abs/1605.01418
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Wolfe’s Combinatorial Methods for MNP
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. The Minimum Euclidean-Norm Point on

a Convex Polytope: Wolfe’s

Combinatorial Algorithm is Exponential

(joint J. A. De Loera and L. Rademacher)

STOC, 2018

https://arxiv.org/abs/1710.02608
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Applications and Connections

LF:

. linear programming

. support vector machine

. linear equations

MNP:

. submodular function

minimization

. colorful linear programming

Theorem (De Loera, H., Rademacher ’17)

LF reduces to MNP on a simplex in strongly-polynomial time.
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Minimum Norm Point (MNP(P))



Minimum Norm Point in Polytope

We are interested in solving the problem (MNP(P)):

min
x∈P
‖x‖2

where P is a polytope, and determining the minimum dimension face, F ,

which achieves distance ‖x‖2.

Reminder: A polytope, P, is the convex hull of points p1,p2, ...,pm,

P =

{ m∑
i=1

λipi :
m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, 2, ...,m

}
.
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Minimum Norm Point in Polytope
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. can be solved via interior-point methods
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Applications

• arbitrary polytope projection

• nearest point problem for transportation polytopes

• subroutine in colorful linear programming

• subroutine in submodular function minimization

• machine learning - vision, large-scale learning

• compute distance to polytope
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Applications

Theorem (De Loera, H., Rademacher ’17)

Linear programming reduces to distance to a simplex in

vertex-representation in strongly-polynomial time.

If a strongly-polynomial method for projection onto a polytope exists

then this gives a strongly-polynomial method for LP.

It was previously known that linear programming reduces to MNP on a

polytope in weakly-polynomial time [Fujishige, Hayashi, Isotani ’06].
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Spoiler

Theorem (De Loera, H., Rademacher ’17)

There exists a family of polytopes on which Wolfe’s method requires

exponential time to compute the MNP.
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Wolfe’s Optimality Condition

Theorem (Wolfe ’74)

Let P = conv(p1,p2, ...,pm). Then x ∈ P is MNP(P) if and only if

xTpj ≥ ‖x‖2
2 for all j = 1, 2, ...,m.
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2}

11



Wolfe’s Method



Philip Wolfe

• Frank-Wolfe method

• Dantzig-Wolfe decomposition

• simplex method for quadratic

programming
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Intuition and Definitions

Idea: Exploit linear information about the problem in order to progress

towards the quadratic solution.

Def: An affinely independent set of points Q = {q1,q2, ...,qk} is a

corral if MNP(aff(Q)) ∈ relint(conv(Q)).

q1 q2

O

q1 q2

q3

O
N N

q2q1

O

N
X

Note: Singletons are corrals.

Note: There is a corral in P whose convex hull contains MNP(P).
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Intuition

Wolfe’s method : combinatorial method for computing projection onto

a vertex-representation polytope (any dimension, any

number of points)

- pivots between corrals which may contain MNP(P)

- projects onto affine hull of sets to check whether a corral

- optimality criterion checks if correct corral
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Sketch of Method

x ∈ P = {p1,p2, ...,pm}
C = {x}
while x is not MNP(P)

pj ∈ {p ∈ P : xTp < ‖x‖2
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while y 6∈ relint(conv(C ))

z = argmin
z∈conv(C)∩xy

‖z− y‖2
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are on different faces of
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x = z
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x = y

return x
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Wolfe’s Method

x = pi for some i = 1, 2, ...,m, λ = ei

C = {i}
while x 6= 0 and there exists pj with xTpj < ‖x‖2

2

C = C ∪ {j}
α = argmin∑

i∈C
αi=1

‖
∑
i∈C

αipi‖2, y =
∑
i∈C

αipi

while αi ≤ 0 for some i = 1, 2, ...,m

θ = min
i :αi≤0

λi

λi−αi

z = θy + (1− θ)x

i ∈ {j : θαj + (1− θ)λj = 0}
C = C − {i}
x = z

solve x = Pλ for λ

α = argmin∑
i∈C
αi=1

‖
∑
i∈C

αipi‖2, y =
∑
i∈C

αipi

x = y

return x

Choice 1: Initial

vertex.

Choice 2: Adding to

corral.

Choice 3: Removing

from corral.
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Rules

Initial: minnorm

Insertion: linopt (select pj minimizing xTpj), minnorm

• insertion rules have different benefits

• behavior depends on choice of insertion rule

• examples in which each insertion rule is better

• a dropped vertex may be readded
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Related Methods

. von Neumann’s algorithm for linear programming

. Frank-Wolfe method for convex programming (and variants)

. Gilbert’s procedure for quadratic programming

• projection onto simple convex hull

. Hanson-Lawson procedure for non-negative least-squares
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Previous Results

• # iterations ≤
∑n+1

i=1 i
(
m
i

)
with any rules (Wolfe ’74)

• ε-approximate solution in O(nM2/ε) iterations with linopt

insertion rule (Chakrabarty, Jain, Kothari ’14)

• ε-approximate solution in O(ρ log(1/ε)) iterations with linopt

insertion rule (Lacoste-Julien, Jaggi ’15)

. pseudo-polynomial complexity
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Exponential Behavior



Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe’s

method is at least exponential in the dimension and number of points

- dimension and number of points grow linearly

- number of corrals visited grows exponentially
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Exponential Example

Goal : build family of instances on which the number of iterations of Wolfe’s

method is at least exponential in the dimension and number of points

Recursively Defined Instances

dim: d − 2

Instance: P(d − 2)

Points: 2d − 5

+2 dim−→
+4 points

dim: d

Instance: P(d)

Points: 2d − 1

P(1) := {1}
P(3) := {(1, 0, 0),p3,q3, r3, s3}

21
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Exponential Example: dim 3

P(3) =


1 0 0
1
2

1
4 1

1
2

1
4 −2

0 1
4 3

0 1
4 −4

 =


o∗1
p3

q3

r3

s3



22
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Exponential Example

P(d) =


P(d − 2) 0 0

1
2 o∗d−2

md−2

4 Md−2
1
2 o∗d−2

md−2

4 −(Md−2 + 1)

0 md−2

4 Md−2 + 2

0 md−2

4 −(Md−2 + 3)



y‖·‖

o∗d−2: MNP(P(d − 2))

md−2 = ‖o∗d−2‖∞
Md−2 = maxp∈P(d−2) ‖p‖1
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Exponential Example

Theorem (De Loera, H., Rademacher ’17)

Consider the execution of Wolfe’s method with the minnorm insertion

rule on input P(d) where d = 2k − 1. Then the sequence of corrals,

C (d) has length 5 · 2k−1 − 4.

24
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Adding Point to Corral

Lemma

Let P ⊆ Rd be a finite set of points that is a corral. Let x be the

minimum norm point in aff P. Let q ∈ span
(

x, span (P)⊥
)

, and assume

qTx < min{‖q‖2
2, ‖x‖2

2}. Then P ∪ {q} is a corral. Moreover, the

minimum norm point y in conv(P ∪ {q}) is a (strict) convex combination

of q and the minimum norm point of P: y = λx + (1− λ)q with

λ = qT (q− x)/‖q− x‖2
2.

a corral with a point made from MNP and orthogonal

directions is still a corral
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Adding Point to Corral

a corral with a point made from MNP and orthogonal

directions is still a corral
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Orthogonal Corrals

Lemma

Let A ⊆ Rd be a proper linear subspace. Let P ⊆ A be a non-empty

finite set. Let Q ⊆ A⊥ be another non-empty finite set. Let x be the

minimum norm point in aff P. Let y be the minimum norm point in

aff Q. Let z be the minimum norm point in aff(P ∪ Q). We have:

1. z is the minimum norm point in [x, y] and therefore

z = λx + (1− λ)y with λ =
‖y‖2

2

‖x‖2
2+‖y‖2

2
.

2. If x 6= 0 and y 6= 0, then z is a strict convex combination of x and y.

3. If x 6= 0, y 6= 0 and P and Q are corrals, then P ∪Q is also a corral.

the union of orthogonal corrals is still a corral
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minimum norm point in aff P. Let y be the minimum norm point in

aff Q. Let z be the minimum norm point in aff(P ∪ Q). We have:

1. z is the minimum norm point in [x, y] and therefore

z = λx + (1− λ)y with λ =
‖y‖2

2

‖x‖2
2+‖y‖2

2
.

2. If x 6= 0 and y 6= 0, then z is a strict convex combination of x and y.

3. If x 6= 0, y 6= 0 and P and Q are corrals, then P ∪Q is also a corral.

the union of orthogonal corrals is still a corral
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Orthogonal Corrals

the union of orthogonal corrals is still a corral
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Wolfe’s Criterion under Addition of Orthogonal Point

Lemma

For a point z define Hz = {w ∈ Rn : w · z < ‖z‖2
2}. Suppose that we

have an instance of the minimum norm point problem in Rd as follows:

Some points, P, live in a proper linear subspace A and some, Q, in A⊥.

Let x be the minimum norm point in aff P and y be the minimum norm

point in aff(P ∪ Q). Then Hy ∩ A = Hx ∩ A.

adding orthogonal points to the corral doesn’t create any

available points
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Wolfe’s Criterion under Addition of Orthogonal Point

adding orthogonal points to the corral doesn’t create any

available points
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Sketch of Proof of Sequence C (d): C (d − 2)

P(d) =


P(d − 2) 0 0

1
2 o∗d−2

md−2

4 Md−2
1
2 o∗d−2

md−2

4 −(Md−2 + 1)

0 md−2

4 Md−2 + 2

0 md−2

4 −(Md−2 + 3)



y‖·‖

o∗d−2: MNP(P(d − 2))

md−2 = ‖o∗d−2‖∞
Md−2 = maxp∈P(d−2) ‖p‖1
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Sketch of Proof of Sequence C (d): O(d − 2)pd
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Sketch of Proof of Sequence C (d): O(d − 2)pd

a corral with a point made from MNP and orthogonal

directions is still a corral
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Sketch of Proof of Sequence C (d): pdqd
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Sketch of Proof of Sequence C (d): pdqd
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Sketch of Proof of Sequence C (d): qdrd
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Sketch of Proof of Sequence C (d): qdrd
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Sketch of Proof of Sequence C (d): rdsd
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Sketch of Proof of Sequence C (d): rdsd
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Sketch of Proof of Sequence C (d): C (d − 2)rdsd

• the union of orthogonal corrals is still a corral

• adding orthogonal points to the corral doesn’t create

any available points 36



Conclusions



Future Directions

1. Find an exponential example for Wolfe’s method with linopt

insertion rule.

2. Search for types of polytopes where Wolfe’s method is polynomial

(e.g. base polytopes).

3. Give an average (or smoothed) analysis of Wolfe’s method.
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Thanks...
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Thanks for attending!
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Example: minnorm < linopt

P = conv{(0.8, 0.9, 0), (1.5,−0.5, 0), (−1,−1, 2), (−4, 1.5, 2)} ⊂ R3
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Example: minnorm < linopt

Major Cycle Minor Cycle C

0 0 {p1}

1 0 {p1, p2}

2 0 {p1, p2, p3}

3 0 {p1, p2, p3, p4}

3 1 {p1, p2, p4}

minnorm < linopt{

Major Cycle Minor Cycle C

0 0 {p1}

1 0 {p1, p4}

2 0 {p1, p4, p3}

2 1 {p1, p3}

3 0 {p1, p3, p2}

4 0 {p1, p2, p3, p4}

4 1 {p1, p2, p4}
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