Connections between Iterative Methods for Linear Systems and Consensus Dynamics on Networks

CCMS Applied Mathematics Seminar March 21st, 2022

> Dr. Jamie Haddock Department of Mathematics Harvey Mudd College

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

Benjamin Jarman UCLA

Chen Yap Planet Labs Inc.

JH, Benjamin Jarman, and Chen Yap (2022). Paving the Way for Consensus: Convergence of Block Gossip Algorithms. Submitted.

Hector Tierno HMC

Iterative methods for linear systems (e.g., Kaczmarz methods).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

Iterative methods for linear systems (e.g., Kaczmarz methods).

A bridge between consensus dynamics on networks and numerical linear algebra.

Consensus Dynamics

Let $\mathcal{G}=(\mathcal{N},\mathcal{E})$ be a graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

Consensus dynamical systems are ones in which nodes values $c_k(i)$ evolve over time, i.e., they change their internal states according to some local interaction-rule, which is applied in every time step.

Consensus Dynamics

Let $\mathcal{G}=(\mathcal{N},\mathcal{E})$ be a graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

Consensus dynamical systems are ones in which nodes values $c_k(i)$ evolve over time, i.e., they change their internal states according to some local interaction-rule, which is applied in every time step.

Consensus Dynamics

Let $\mathcal{G}=(\mathcal{N},\mathcal{E})$ be a graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

Consensus dynamical systems are ones in which nodes values $c_k(i)$ evolve over time, i.e., they change their internal states according to some local interaction-rule, which is applied in every time step.

• opinion dynamics

- opinion dynamics
- voting and ranking models

- opinion dynamics
- voting and ranking models
- interacting particle systems

- opinion dynamics
- voting and ranking models
- interacting particle systems
- combinatorial matrix theory

- opinion dynamics
- voting and ranking models
- interacting particle systems
- combinatorial matrix theory
- systems biology

- opinion dynamics
- voting and ranking models
- interacting particle systems
- combinatorial matrix theory
- systems biology
- Markov chains

- opinion dynamics
- voting and ranking models
- interacting particle systems
- combinatorial matrix theory
- systems biology
- Markov chains
- distributed computing

- opinion dynamics
- voting and ranking models
- interacting particle systems
- combinatorial matrix theory
- systems biology
- Markov chains
- distributed computing

• discrete state majority models

- discrete state majority models
- discrete state voting models

- discrete state majority models
- discrete state voting models
- discrete state median models

- discrete state majority models
- discrete state voting models
- discrete state median models
- averaging models

Example: Average Consensus

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be an undirected connected graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

The average consensus problem is to compute (iteratively) the average value $c^*:=\sum_{i\in\mathcal{N}}c_0(i)/|\mathcal{N}|$ at every node, allowing only local communication on the graph.

Example: Average Consensus

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be an undirected connected graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

The average consensus problem is to compute (iteratively) the average value $c^*:=\sum_{i\in\mathcal{N}}c_0(i)/|\mathcal{N}|$ at every node, allowing only local communication on the graph.

Example: Average Consensus

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be an undirected connected graph with nodes \mathcal{N} and edges \mathcal{E} .

Let $c_k(i)$ be a real scalar assigned to node i at time k.

The average consensus problem is to compute (iteratively) the average value $c^* := \sum_{i \in \mathcal{N}} c_0(i) / |\mathcal{N}|$ at every node, allowing only local communication on the graph.

• load balancing in parallel computing

- load balancing in parallel computing
- network clock synchronization

- load balancing in parallel computing
- network clock synchronization
- coordination of mobile autonomous agents

- load balancing in parallel computing
- network clock synchronization
- coordination of mobile autonomous agents
- distributed data fusion

- load balancing in parallel computing
- network clock synchronization
- coordination of mobile autonomous agents
- distributed data fusion
- PageRank

- load balancing in parallel computing
- network clock synchronization
- coordination of mobile autonomous agents
- distributed data fusion
- PageRank
- decentralized optimization

Given graph \mathcal{G} , initial values \mathbf{c}_0 , and edge subsets $T=\{ au_1,\cdots, au_d\}$, for $k=1,2,\cdots$:

- Choose edge subset au uniformly at random from T.
- Form $\mathcal{G}_{ au}$, the edge-induced subgraph of \mathcal{G} defined by edges in au.
- Nodes in each connected component of \mathcal{G}_{τ} average their values and nodes outside of \mathcal{G}_{τ} do not update; this produces new secret values \mathbf{c}_k .

Given graph \mathcal{G} , initial values \mathbf{c}_0 , and edge subsets $T=\{ au_1,\cdots, au_d\}$, for $k=1,2,\cdots$:

- Choose edge subset au uniformly at random from T.
- Form $\mathcal{G}_{ au}$, the edge-induced subgraph of \mathcal{G} defined by edges in au.
- Nodes in each connected component of \mathcal{G}_{τ} average their values and nodes outside of \mathcal{G}_{τ} do not update; this produces new secret values \mathbf{c}_k .

Given graph \mathcal{G} , initial values \mathbf{c}_0 , and edge subsets $T=\{ au_1,\cdots, au_d\}$, for $k=1,2,\cdots$:

- Choose edge subset au uniformly at random from T.
- Form $\mathcal{G}_{ au}$, the edge-induced subgraph of \mathcal{G} defined by edges in au.
- Nodes in each connected component of \mathcal{G}_{τ} average their values and nodes outside of \mathcal{G}_{τ} do not update; this produces new secret values \mathbf{c}_k .

Given graph \mathcal{G} , initial values \mathbf{c}_0 , and edge subsets $T=\{ au_1,\cdots, au_d\}$, for $k=1,2,\cdots$:

- Choose edge subset au uniformly at random from T.
- Form $\mathcal{G}_{ au}$, the edge-induced subgraph of \mathcal{G} defined by edges in au.
- Nodes in each connected component of \mathcal{G}_{τ} average their values and nodes outside of \mathcal{G}_{τ} do not update; this produces new secret values \mathbf{c}_k .

Given graph \mathcal{G} , initial values \mathbf{c}_0 , and edge subsets $T=\{ au_1,\cdots, au_d\}$, for $k=1,2,\cdots$:

- Choose edge subset au uniformly at random from T.
- Form $\mathcal{G}_{ au}$, the edge-induced subgraph of \mathcal{G} defined by edges in au.
- Nodes in each connected component of \mathcal{G}_{τ} average their values and nodes outside of \mathcal{G}_{τ} do not update; this produces new secret values \mathbf{c}_k .

Block Gossip Methods

- path gossiping: F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Order-optimal consensus through randomized path averaging. IEEE T. Inform. Theory, 56(10):5150-5167, 2010.
- clique gossiping: Y. Liu, B. Li, B. O.
 Anderson, and G. Shi. Clique gossiping.
 IEEE/ACM Transactions on Networking, 27(06):2418–2431, nov 2019.
- edge-independent set gossiping: S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.
 IEEE T. Inform. Theory, 52:2508–2530, 2006.

Block Gossip Methods

- path gossiping: F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Order-optimal consensus through randomized path averaging. IEEE T. Inform. Theory, 56(10):5150-5167, 2010.
- clique gossiping: Y. Liu, B. Li, B. O. Anderson, and G. Shi. Clique gossiping. IEEE/ACM Transactions on Networking, 27(06):2418–2431, nov 2019.
- edge-independent set gossiping: S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.
 IEEE T. Inform. Theory, 52:2508–2530, 2006.

Block Gossip Methods

- path gossiping: F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Order-optimal consensus through randomized path averaging. IEEE T. Inform. Theory, 56(10):5150-5167, 2010.
- clique gossiping: Y. Liu, B. Li, B. O. Anderson, and G. Shi. Clique gossiping. IEEE/ACM Transactions on Networking, 27(06):2418–2431, nov 2019.
- edge-independent set gossiping: S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE T. Inform. Theory, 52:2508–2530, 2006.

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A bridge between consensus dynamics on networks and numerical linear algebra.

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

Many classical numerical linear algebraic iterative methods for solving linear systems operate with row or column subset information, and/or entry-wise on iterates.

• Kaczmarz methods

- Kaczmarz methods
- Jacobi methods

- Kaczmarz methods
- Jacobi methods
- Gauss-Seidel methods

- Kaczmarz methods
- Jacobi methods
- Gauss-Seidel methods
- coordinate descent methods

Example: Block Kaczmarz Method

Given linear system measurement matrix A and measurement vector \mathbf{b} , initial iterate \mathbf{x}_0 , and sets of row indices $T = \{\tau_1, \cdots, \tau_d\}$, for $k = 1, 2, \cdots$:

- Choose row block au uniformly at random from T.
- $\bullet \ \mathbf{x}_k = \mathbf{x}_{k-1} + A_\tau^\dagger (\mathbf{b}_\tau A_\tau \mathbf{x}_{k-1})$

Needell, D., & Tropp, J. A. (2014). Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra and its Applications, 441, 199-221.

Example: Block Kaczmarz Method

Given linear system measurement matrix A and measurement vector \mathbf{b} , initial iterate \mathbf{x}_0 , and sets of row indices $T = \{\tau_1, \cdots, \tau_d\}$, for $k = 1, 2, \cdots$:

- Choose row block au uniformly at random from T.
- $\bullet \ \mathbf{x}_k = \mathbf{x}_{k-1} + A_\tau^\dagger (\mathbf{b}_\tau A_\tau \mathbf{x}_{k-1})$

Needell, D., & Tropp, J. A. (2014). Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra and its Applications, 441, 199-221.

Example: Block Kaczmarz Method

Given linear system measurement matrix A and measurement vector \mathbf{b} , initial iterate \mathbf{x}_0 , and sets of row indices $T = \{\tau_1, \cdots, \tau_d\}$, for $k = 1, 2, \cdots$:

- Choose row block au uniformly at random from T.
- $\bullet \ \mathbf{x}_k = \mathbf{x}_{k-1} + A_\tau^\dagger (\mathbf{b}_\tau A_\tau \mathbf{x}_{k-1})$

Needell, D., & Tropp, J. A. (2014). Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra and its Applications, 441, 199-221.

How to choose the subset of rows, T?

Definition: A (d, α, β) row paving of a matrix **A** is a partition $T = \{\tau_1, \tau_2, \dots, \tau_d\}$ of the row indices that satisfies

 $lpha \leq \lambda_{\min}(\mathbf{A}_{ au}\mathbf{A}_{ au}^{ op}) ext{ and } \lambda_{\max}(\mathbf{A}_{ au}\mathbf{A}_{ au}^{ op}) \leq eta ext{ for each } au \in T. \ ^1$

¹ As defined in:

D. Needell and J. Tropp (2014). Paved with good intentions: Analysis of a randomized block Kaczmarz method. *Linear Algebra and Applications* 441, 199-221.

How to choose the subset of rows, T?

Definition: A (d, α, β, r, R) row covering of a matrix **A** is a collection of subsets $T = \{\tau_1, \tau_2, \cdots, \tau_d\}$ of the row indices, $\tau_i \subset [m]$ for all $i = 1, \cdots, d$, that covers the row indices, for each $i \in [m]$ we have $i \in \tau_l$ for some $l = 1, \cdots, d$, and that satisfies

$$lpha \leq \lambda_{\min+}(\mathbf{A}_{ au}\mathbf{A}_{ au}^{ op}) ext{ and } \lambda_{\max}(\mathbf{A}_{ au}\mathbf{A}_{ au}^{ op}) \leq eta ext{ for each } au \in T,$$

where r and R are the minimum and maximum, respectively, number of blocks in which a single row appears, i.e., $r = \min_{i \in [m]} |\{\tau_l \in T : i \in \tau_l\}|$ and $R = \max_{i \in [m]} |\{\tau_l \in T : i \in \tau_l\}|$.

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A bridge between consensus dynamics on networks and numerical linear algebra.

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

The Bridge

formulate averaging consensus as a homogenous linear system (e.g., Laplacian system, incidence system)

Loizou, N., & Richtárik, P. (2021). Revisiting randomized gossip algorithms: General framework, convergence rates and novel block and accelerated protocols. IEEE Transactions on Information Theory, 67(12), 8300-8324.

The Bridge

- formulate averaging consensus as a homogenous linear system (e.g., Laplacian system, incidence system)
- describe the iterative local update as an **iteration of a NLA method**

Loizou, N., & Richtárik, P. (2021). Revisiting randomized gossip algorithms: General framework, convergence rates and novel block and accelerated protocols. IEEE Transactions on Information Theory, 67(12), 8300-8324.

The Bridge

- formulate averaging consensus as a homogenous linear system (e.g., Laplacian system, incidence system)
- describe the iterative local update as an iteration of a NLA method
- apply theory from NLA and algebraic graph theory to consensus dynamics model (e.g., convergence rate, limiting state, etc.)

Loizou, N., & Richtárik, P. (2021). Revisiting randomized gossip algorithms: General framework, convergence rates and novel block and accelerated protocols. IEEE Transactions on Information Theory, 67(12), 8300-8324.

The graph...

The graph...

...the incidence matrix

The bridge application...

The block gossip method with blocks Tproduces the same iterates as the block Kaczmarz method performed with $\mathbf{A} = \mathbf{Q}$, $\mathbf{b} = \mathbf{0}$, and $\mathbf{x}_0 = \mathbf{c}_0$ with row blocks corresponding to the same edge sets as T.

...the incidence matrix

$$\mathbf{Q} = \begin{bmatrix} \mathbf{1} & -\mathbf{1} & 0 & 0 & 0 & 0 \\ \mathbf{1} & 0 & -\mathbf{1} & 0 & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 & -\mathbf{1} \\ 0 & \mathbf{1} & 0 & 0 & 0 & -\mathbf{1} \\ 0 & 0 & \mathbf{1} & 0 & 0 & -\mathbf{1} \\ 0 & 0 & \mathbf{1} & -\mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} & -\mathbf{1} \end{bmatrix}$$

Application to Average Consensus and Block Gossip

The Block Gossip method is a special case of the Block Kaczmarz method for a **linear algebraic formulation of the average consensus problem**.

Theorem: Consider the least-squares problem $\min \|\mathbf{Ax} - \mathbf{b}\|_2^2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is not necessarily full-rank and $\mathbf{b} \in \mathbb{R}^m$. Let $T = \{\tau_1, \dots, \tau_d\}$ be a (d, α, β, r, R) covering (not necessarily a paving) of the rows of \mathbf{A} . Let \mathbf{x}_j denote the *j*th iterate produced by Block RK on the system defined by \mathbf{A} and \mathbf{b} with initial iterate \mathbf{x}_0 , let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x}} \|\mathbf{Ax} - \mathbf{b}\|_2^2$, and let $\mathbf{e} := \mathbf{Ax}^* - \mathbf{b}$. Then we have

$$\mathbb{E}\left(\|\mathbf{x}_j-\mathbf{x}^*\|_2^2
ight) \leq \left(1-rac{r\sigma_{\min+}^2(\mathbf{A})}{eta d}
ight)^{j}\|\mathbf{x}_0-\mathbf{x}^*\|_2^2 + rac{eta R}{lpha r\sigma_{\min+}^2(\mathbf{A})}\|\mathbf{e}\|_2^2,$$

where $\sigma_{\min+}(\mathbf{A})$ is the smallest nonzero singular value of \mathbf{A}

Theorem: Consider the least-squares problem $\min \|\mathbf{Ax} - \mathbf{b}\|_2^2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is not necessarily full-rank and $\mathbf{b} \in \mathbb{R}^m$. Let $T = \{\tau_1, \dots, \tau_d\}$ be a (d, α, β, r, R) covering (not necessarily a paving) of the rows of \mathbf{A} . Let \mathbf{x}_j denote the *j*th iterate produced by Block RK on the system defined by \mathbf{A} and \mathbf{b} with initial iterate \mathbf{x}_0 , let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x}} \|\mathbf{Ax} - \mathbf{b}\|_2^2$, and let $\mathbf{e} := \mathbf{Ax}^* - \mathbf{b}$. Then we have

$$\mathbb{E}\left(\|\mathbf{x}_j-\mathbf{x}^*\|_2^2
ight) \leq \left(1-rac{r\sigma_{\min+}^2(\mathbf{A})}{eta d}
ight)^{j}\|\mathbf{x}_0-\mathbf{x}^*\|_2^2 + rac{eta R}{lpha r\sigma_{\min+}^2(\mathbf{A})}\|\mathbf{e}\|_2^2,$$

where $\sigma_{\min+}(\mathbf{A})$ is the smallest nonzero singular value of \mathbf{A}

Theorem: Consider the least-squares problem $\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is not necessarily full-rank and $\mathbf{b} \in \mathbb{R}^m$. Let $T = \{\tau_1, \dots, \tau_d\}$ be a (d, α, β, r, R) covering (not necessarily a paving) of the rows of \mathbf{A} . Let \mathbf{x}_j denote the jth iterate produced by Block RK on the system defined by \mathbf{A} and \mathbf{b} with initial iterate \mathbf{x}_0 , let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, and let $\mathbf{e} := \mathbf{A}\mathbf{x}^* - \mathbf{b}$. Then we have

$$\mathbb{E}\left(\|\mathbf{x}_j-\mathbf{x}^*\|_2^2
ight) \leq \left(1-rac{r\sigma_{\min+}^2(\mathbf{A})}{eta d}
ight)^{j}\|\mathbf{x}_0-\mathbf{x}^*\|_2^2 + rac{eta R}{lpha r\sigma_{\min+}^2(\mathbf{A})}\|\mathbf{e}\|_2^2,$$

where $\sigma_{\min+}(\mathbf{A})$ is the smallest nonzero singular value of \mathbf{A}

Theorem: Consider the least-squares problem $\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is not necessarily full-rank and $\mathbf{b} \in \mathbb{R}^m$. Let $T = \{\tau_1, \dots, \tau_d\}$ be a (d, α, β, r, R) covering (not necessarily a paving) of the rows of \mathbf{A} . Let \mathbf{x}_j denote the jth iterate produced by Block RK on the system defined by \mathbf{A} and \mathbf{b} with initial iterate \mathbf{x}_0 , let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, and let $\mathbf{e} := \mathbf{A}\mathbf{x}^* - \mathbf{b}$. Then we have

$$\mathbb{E}\left(\|\mathbf{x}_j-\mathbf{x}^*\|_2^2
ight) \leq \left(1-rac{r\sigma_{\min+}^2(\mathbf{A})}{eta d}
ight)^{j}\|\mathbf{x}_0-\mathbf{x}^*\|_2^2 + rac{eta R}{lpha r\sigma_{\min+}^2(\mathbf{A})}\|\mathbf{e}\|_2^2,$$

where $\sigma_{\min+}(\mathbf{A})$ is the smallest nonzero singular value of \mathbf{A} .

Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14] in several ways:

Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14] in several ways:

• Generalizes to the case when the least-squares problem is rank-deficient.

Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14] in several ways:

- Generalizes to the case when the least-squares problem is rank-deficient.
- Relaxes the requirement that the row blocks be sampled from a matrix paving.

Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14] in several ways:

- Generalizes to the case when the least-squares problem is rank-deficient.
- Relaxes the requirement that the row blocks be sampled from a matrix paving.
- Demonstrates that the convergence horizon depends upon the **minimum nonzero singular value** of the blocks A_{τ} rather the absolute minimum singular value (often 0).

Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14] in several ways:

- Generalizes to the case when the least-squares problem is rank-deficient.
- Relaxes the requirement that the row blocks be sampled from a matrix paving.
- Demonstrates that the convergence horizon depends upon the **minimum nonzero singular value** of the blocks A_{τ} rather the absolute minimum singular value (often 0).

These generalizations are important for application to average consensus and block gossip methods, but are likely of interest in other applications.

Application to Average Consensus and Block Gossip

The Block Gossip method is a special case of the Block Kaczmarz method for a **linear algebraic formulation of the average consensus problem**.

The Block Kaczmarz convergence result yields as a corollary a **convergence result for the block gossip method**.

Block Gossip Convergence

Corollary: Suppose graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is connected, $\mathbf{Q} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}|}$ is the incidence matrix for \mathcal{G} , and $T = \{\tau_1, \cdots, \tau_d\}$ is a (d, α, β, r, R) row covering for \mathbf{Q} with $M = \max_{i \in [d]} |\tau_i|$. Then the block gossip method with blocks determined by T converges at least linearly in expectation with the guarantee

$$\mathbb{E}\|\mathbf{c}_k-\mathbf{c}^*\|_2^2 \leq \left(1-rac{rlpha(\mathcal{G})}{eta d}
ight)^k\|\mathbf{c}_0-\mathbf{c}^*\|_2^2,$$

where $lpha(\mathcal{G})$ is the algebraic connectivity of graph \mathcal{G} . Here \mathbf{c}^* is the constant vector with all entries equal to the average of the entries of \mathbf{c}_0

Block Gossip Convergence

Corollary: Suppose graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is connected, $\mathbf{Q} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}|}$ is the incidence matrix for \mathcal{G} , and $T = \{\tau_1, \cdots, \tau_d\}$ is a (d, α, β, r, R) row covering for \mathbf{Q} with $M = \max_{i \in [d]} |\tau_i|$. Then the block gossip method with blocks determined by T converges at least linearly in expectation with the guarantee

$$\mathbb{E}\|\mathbf{c}_k-\mathbf{c}^*\|_2^2 \leq \left(1-rac{rlpha(\mathcal{G})}{eta d}
ight)^k\|\mathbf{c}_0-\mathbf{c}^*\|_2^2,$$

where $\alpha(\mathcal{G})$ is the algebraic connectivity of graph \mathcal{G} . Here \mathbf{c}^* is the constant vector with all entries equal to the average of the entries of \mathbf{c}_0 .
$$\|\mathbb{E}\|\mathbf{c}_k-\mathbf{c}^*\|_2^2 \leq \left(1-rac{rlpha(\mathcal{G})}{eta d}
ight)^k\|\mathbf{c}_0-\mathbf{c}^*\|_2^2$$

- If T consists of independent edge sets, the rate constant can be bounded by $\left(1-rac{rlpha(\mathcal{G})}{2d}
 ight)$.
- If T consists of clique or path subgraphs, the rate constant can be bounded by $\left(1 \frac{r\alpha(G)}{(2-2\cos\frac{M\pi}{M+1})d}\right) \leq \left(1 \frac{r\alpha(\mathcal{G})}{4d}\right)$.
- If T consists of arbitrary connected subgraphs, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{Md}\right).$

$$\|\mathbb{E}\|\mathbf{c}_k-\mathbf{c}^*\|_2^2 \leq \left(1-rac{rlpha(\mathcal{G})}{eta d}
ight)^k\|\mathbf{c}_0-\mathbf{c}^*\|_2^2$$

- If T consists of independent edge sets, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{2d}\right)$.
- If T consists of clique or path subgraphs, the rate constant can be bounded by $\left(1 \frac{r\alpha(G)}{(2-2\cos\frac{M\pi}{M+1})d}\right) \leq \left(1 \frac{r\alpha(\mathcal{G})}{4d}\right)$.
- If T consists of arbitrary connected subgraphs, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{Md}\right).$

$$\|\mathbb{E}\|\mathbf{c}_k-\mathbf{c}^*\|_2^2 \leq \left(1-rac{rlpha(\mathcal{G})}{eta d}
ight)^k\|\mathbf{c}_0-\mathbf{c}^*\|_2^2$$

- If T consists of independent edge sets, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{2d}\right).$
- If T consists of clique or path subgraphs, the rate constant can be bounded by $\left(1 \frac{r\alpha(G)}{(2-2\cos\frac{M\pi}{M+1})d}\right) \leq \left(1 \frac{r\alpha(\mathcal{G})}{4d}\right)$.
- If T consists of arbitrary connected subgraphs, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{Md}\right).$

$$\| \mathbb{E} \| \mathbf{c}_k - \mathbf{c}^* \|_2^2 \leq \left(1 - rac{r lpha(\mathcal{G})}{eta d}
ight)^k \| \mathbf{c}_0 - \mathbf{c}^* \|_2^2$$

- If T consists of independent edge sets, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{2d}\right).$
- If T consists of clique or path subgraphs, the rate constant can be bounded by $\left(1 \frac{r\alpha(G)}{(2-2\cos\frac{M\pi}{M+1})d}\right) \leq \left(1 \frac{r\alpha(\mathcal{G})}{4d}\right)$.
- If T consists of arbitrary connected subgraphs, the rate constant can be bounded by $\left(1-\frac{r\alpha(\mathcal{G})}{Md}\right).$

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

Consensus dynamics on networks (e.g., average consensus).

Iterative methods for linear systems (e.g., Kaczmarz methods).

A **bridge** between consensus dynamics on networks and numerical linear algebra.

There is a natural bridge between many problems regarding consensus dynamics on networks and classical iterative methods from numerical linear algebra.

• distributed consensus

- distributed consensus
- opinion dynamics

- distributed consensus
- opinion dynamics
- ranking models

- distributed consensus
- opinion dynamics
- ranking models
- Laplacian-system based solvers

There is a natural bridge between many problems regarding consensus dynamics on networks and classical iterative methods from numerical linear algebra.

- distributed consensus
- opinion dynamics
- ranking models
- Laplacian-system based solvers

To tackle more complex models (e.g., bounded confidence, imperfect communication, etc.) we can look to the ever-growing body of NLA literature on variants of iterative methods.

Current Work

Show that the unbounded Hegselmann-Krause (HK) model can be analyzed under the Jacobi and Gauss-Seidel method framework.

Hector Tierno HMC

Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of artificial societies and social simulation, 5(3).

Current Work

Show that the unbounded Hegselmann-Krause (HK) model can be analyzed under the Jacobi and Gauss-Seidel method framework.

Hector Tierno HMC

Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of artificial societies and social simulation, 5(3).

Future Work

Analyze **bounded** models through the framework of residual-constrained iterative methods.

Future Work

Analyze **bounded** models through the framework of residual-constrained iterative methods.

Understand limit of consensus models via NLA and algebraic graph theory literature.

Meng, X. F., Van Gorder, R. A., & Porter, M. A. (2018). Opinion formation and distribution in a bounded-confidence model on various networks. Physical Review E, 97(2), 022312.

Future Work

Analyze **bounded** models through the framework of residual-constrained iterative methods.

Understand limit of consensus models via NLA and algebraic graph theory literature.

Extend work to models on hypergraphs.

Hickok, A., Kureh, Y., Brooks, H. Z., Feng, M., & Porter, M. A. (2022). A bounded-confidence model of opinion dynamics on hypergraphs. SIAM Journal on Applied Dynamical Systems, 21(1), 1-32.

Meng, X. F., Van Gorder, R. A., & Porter, M. A. (2018). Opinion formation and distribution in a bounded-confidence model on various networks. Physical Review E, 97(2), 022312.

The **average consensus problem** may be formulated as a least-squares problem.

Benjamin Jarman UCLA

Chen Yap Planet Labs Inc.

JH, Benjamin Jarman, and Chen Yap (2022). Paving the Way for Consensus: Convergence of Block Gossip Algorithms. *Submitted*.

The **average consensus problem** may be formulated as a least-squares problem.

Popular **gossip methods** may be viewed as special cases of Kaczmarz methods.

Benjamin Jarman UCLA

Chen Yap Planet Labs Inc.

JH, Benjamin Jarman, and Chen Yap (2022). Paving the Way for Consensus: Convergence of Block Gossip Algorithms. Submitted.

The **average consensus problem** may be formulated as a least-squares problem.

Popular **gossip methods** may be viewed as special cases of Kaczmarz methods.

Convergence results for Kaczmarz methods provide as corollaries **convergence results for the gossip methods**.

Benjamin Jarman UCLA

Chen Yap Planet Labs Inc.

JH, Benjamin Jarman, and Chen Yap (2022). Paving the Way for Consensus: Convergence of Block Gossip Algorithms. Submitted.

The **average consensus problem** may be formulated as a least-squares problem.

Popular **gossip methods** may be viewed as special cases of Kaczmarz methods.

Convergence results for Kaczmarz methods provide as corollaries **convergence results for the gossip methods**.

This technique may be exploited for other models of consensus dynamics on networks.

Benjamin Jarman UCLA

Chen Yap Planet Labs Inc.

JH, Benjamin Jarman, and Chen Yap (2022). Paving the Way for Consensus: Convergence of Block Gossip Algorithms. *Submitted*.

Thanks everyone!

Questions?