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Consensus Dynamics

Let  be a graph with nodes 
 and edges .

Let  be a real scalar assigned to
node  at time .

Consensus dynamical systems are
ones in which nodes values 
evolve
over time, i.e., they change their
internal states according to some local
interaction-rule, which
is applied in
every time step.

G = (N , E)
N E
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Consensus Dynamics:
Model Types

discrete state majority models

Becchetti, L., Clementi, A., & Natale, E. (2020). Consensus
dynamics: An overview. ACM SIGACT News, 51(1), 58-104.
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Consensus Dynamics:
Model Types

discrete state majority models

discrete state voting models

discrete state median models

averaging models

Becchetti, L., Clementi, A., & Natale, E. (2020). Consensus
dynamics: An overview. ACM SIGACT News, 51(1), 58-104.



Example: Average Consensus

Let  be an undirected
connected graph with nodes  and
edges .

Let  be a real scalar assigned to
node  at time .

The average consensus problem is to
compute (iteratively) the average
value  at every
node, allowing only local
communication on the graph.

G = (N , E)
N

E

ck(i)
i k

c∗ := ∑i∈N c0(i)/|N |
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Block Gossip Method
Given graph , initial values , and
edge subsets , for 

:

Choose edge subset  uniformly at
random from .


Form , the edge-induced subgraph of

 defined by edges in .
Nodes in each connected component
of  average their values and nodes
outside of  do not update; this
produces new secret values .

G c0

T = {τ1, ⋯ , τd}
k = 1, 2, ⋯

τ

T

Gτ

G τ

Gτ

Gτ

ck

Related to the unbounded Deffuant–Weisbuch model. 

Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2001).
Mixing beliefs among interacting agents. Advances in
Complex Systems, (3), 11.
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Block Gossip Methods
path gossiping: F. Benezit, A. G. Dimakis,
P. Thiran, and M. Vetterli. Order-optimal
consensus through randomized path
averaging. IEEE T. Inform. Theory,
56(10):5150–5167, 2010.
clique gossiping: Y. Liu, B. Li, B. O.
Anderson, and G. Shi. Clique gossiping.
IEEE/ACM Transactions on Networking,
27(06):2418–2431, nov 2019.
edge-independent set gossiping: S. P.
Boyd, A. Ghosh, B. Prabhakar, and D.
Shah. Randomized gossip algorithms.
IEEE T. Inform. Theory, 52:2508–2530,
2006.
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Iterative Methods for
Linear Systems

Many classical numerical linear
algebraic iterative methods for solving
linear systems operate with row or
column subset information, and/or
entry-wise on iterates.

Kaczmarz methods

Jacobi methods

Gauss-Seidel methods

coordinate descent methods














Example: Block Kaczmarz
Method

Given linear system measurement
matrix  and measurement vector ,
initial iterate , and sets of row indices 

, for :



Choose row block  uniformly at
random from .



A b

x0

T = {τ1, ⋯ , τd} k = 1, 2, ⋯

τ

T

xk = xk−1 + A
†
τ(bτ − Aτxk−1)

Needell, D., & Tropp, J. A. (2014). Paved with good intentions:
analysis of a randomized block Kaczmarz method. Linear
Algebra and its Applications, 441, 199-221.
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How to choose the subset of rows, ?

Definition: A  row paving of a matrix  is a partition 
 of the row indices that satisfies

T

(d,α,β) A

T = {τ1, τ2, ⋯ , τd}

α ≤ λmin(AτA
⊤
τ ) and λmax(AτA

⊤
τ ) ≤ β for each τ ∈ T . 1

 As defined in: 

D. Needell and J. Tropp (2014). Paved with good intentions: Analysis of a randomized block Kaczmarz method.
Linear Algebra and Applications 441, 199-221.

1



How to choose the subset of rows, ?

Definition: A  row covering of a matrix  is a collection of
subsets  of the row indices,  for all 

, that covers the row indices, for each  we have 
for some , and that satisfies

where  and  are the minimum and maximum, respectively, number of
blocks in which a single row appears, i.e., 
and .

T

(d,α,β, r,R) A

T = {τ1, τ2, ⋯ , τd} τi ⊂ [m]
i = 1, ⋯ , d i ∈ [m] i ∈ τl

l = 1, ⋯ , d

α ≤ λmin +(AτA
⊤
τ ) and λmax(AτA

⊤
τ ) ≤ β for each τ ∈ T ,

r R

r = mini∈[m] |{τl ∈ T : i ∈ τl}|
R = maxi∈[m] |{τl ∈ T : i ∈ τl}|
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The Bridge



formulate averaging consensus as a
homogenous linear system (e.g.,
Laplacian system, incidence system)

Loizou, N., & Richtárik, P. (2021). Revisiting randomized gossip
algorithms: General framework, convergence rates and
novel block and accelerated protocols. IEEE Transactions on
Information Theory, 67(12), 8300-8324.
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The Bridge



formulate averaging consensus as a
homogenous linear system (e.g.,
Laplacian system, incidence system)

describe the iterative local update as
an iteration of a NLA method

apply theory from NLA and algebraic
graph theory to consensus dynamics
model (e.g., convergence rate, limiting
state, etc.)

Loizou, N., & Richtárik, P. (2021). Revisiting randomized gossip
algorithms: General framework, convergence rates and
novel block and accelerated protocols. IEEE Transactions on
Information Theory, 67(12), 8300-8324.
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`

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 −1 0

0 0 0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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The bridge application...

The block gossip method with blocks 
produces the same iterates as the
block Kaczmarz method performed
with , , and  with
row blocks corresponding to the same
edge sets as .

T

A = Q b = 0 x0 = c0

T

...the incidence matrix





`

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 −1 0

0 0 0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Application to Average Consensus and Block Gossip

The Block Gossip method is a special
case of the Block Kaczmarz method for
a linear algebraic formulation of the
average consensus problem.
















Block Kaczmarz Convergence
Theorem: Consider the least-squares problem  where 

 is not necessarily full-rank and . Let 
be a  covering (not necessarily a paving) of the rows of .
Let  denote the th iterate produced by Block RK on the system defined
by  and  with initial iterate , let  and let 

.
Then we have

where  is the smallest nonzero singular value of .

min ∥Ax − b∥2
2

A ∈ R
m×n b ∈ R

m T = {τ1, ⋯ , τd}
(d,α,β, r,R) A

xj j

A b x0 x∗ := argminx∥Ax − b∥2
2,

e := Ax∗ − b

E (∥xj − x∗∥2
2) ≤ (1 − )

j

∥x0 − x∗∥2
2 + ∥e∥2

2,
rσ2

min +(A)

βd

βR

αrσ2
min +(A)

σmin +(A) A
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Generalizes the block Kaczmarz convergence result of [Needell, Tropp '14]
in several ways:

Generalizes to the case when the least-squares problem is rank-deficient.
Relaxes the requirement that the row blocks be sampled from a matrix
paving.
Demonstrates that the convergence horizon depends upon the minimum
nonzero singular value of the blocks  rather the absolute minimum
singular value (often 0).

These generalizations are important for application to average
consensus and block gossip methods, but are likely of interest in other
applications.

Aτ



Application to Average Consensus and Block Gossip

The Block Gossip method is a special
case of the Block Kaczmarz method for
a linear algebraic formulation of the
average consensus problem.

The Block Kaczmarz convergence result
yields as a corollary a convergence
result for the block gossip method.
















Block Gossip Convergence

Corollary: Suppose graph  is connected,  is the
incidence matrix for , and  is a  row
covering for  with . Then the block gossip method
with blocks determined by  converges at least linearly in expectation
with the guarantee

where  is the algebraic connectivity of graph . Here  is the
constant vector with all entries equal to the average of the entries of .

G = (V, E) Q ∈ R
|E|×|V|

G T = {τ1, ⋯ , τd} (d,α,β, r,R)
Q M = maxi∈[d] |τi|

T

E∥ck − c∗∥2
2 ≤ (1 − )

k

∥c0 − c∗∥2
2,

rα(G)

βd

α(G) G c∗

c0
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Block Gossip Convergence

If  consists of independent edge sets, the rate constant can be bounded

by 

If  consists of clique or path subgraphs, the rate constant can be

bounded by 

If  consists of arbitrary connected subgraphs, the rate constant can be

bounded by 

E∥ck − c∗∥2
2 ≤ (1 − )

k

∥c0 − c∗∥2
2

rα(G)

βd

T

(1 − ) .
rα(G)

2d

T

(1 − ) ≤ (1 − ) .
rα(G)

(2−2 cos )dMπ

M+1

rα(G)

4d

T

(1 − ) .
rα(G)

Md
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Building a Robust Bridge

There is a natural bridge between
many problems regarding consensus
dynamics on networks and classical
iterative methods from numerical linear
algebra.

distributed consensus
opinion dynamics
ranking models
Laplacian-system based solvers

To tackle more complex models (e.g.,
bounded confidence, imperfect
communication, etc.) we can look to
the ever-growing body of NLA literature
on variants of iterative methods.
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Extend work to models on hypergraphs.
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This technique may be exploited for
other models of consensus dynamics
on networks.
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Thanks everyone!

Questions?


