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Solve an overdetermined system of equations
Ax=b

where some entries of b have been arbitrarily corrupted.

A X b
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e We call x* in R" the pseudosolution.

e bc € R” has at most Sm nonzero entries (§ is the fraction of
corrupted entries).

e Given knowledge of A and the corrupted measurements
b := Ax* + b, we would like an algorithm to recover x*.

e Moreover we would like to recover x* via row-action methods (e.g.
Randomized Kazcmarz, or SGD) which use rows of A, a,-T.

e For which matrices A can we obtain such a guarantee?
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First Approach: Randomized Kaczmarz (RK)

RK

1. Start with initial guess xq
2. Xpq1 =X + (b, — a,{xk)a,-k where iy € [m] is chosen randomly

3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)

If Ax = b is consistent and RK is used with P[i, = j] = ||a;||?/||Al|% then
iterates converge linearly in expectation with

K
* 1 *
Elx, — x*|*>< (1_|A||,2:||A1||2> [Ixo — x*|%.
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RK with corruptions

— Random Kaczmarz

500 1000 1500 2000 2500 3000
Iterations

e 50000 x 100 Gaussian system with 1000 corruptions.
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Median Thresholding

e Idea: If a sampled hyperplane looks corrupted, don't project!

e Consider the set of distances {d,...dy} from x4 to the
hyperplanes. If d; is unusually large among these distances, then
don't project onto that hyperplane.

e To quantify: Don't project if d; is larger than the median of
{dy,...,dn}.

e (Nothing too special about the median — other quantiles are
possible.)

e For efficiency, it is useful to subsample a collection of rows when
computing the median.



Median RK

Method 1 Median RK

1. procedure MEDRK(A, b, N, T)

2 xo=0

3 forj=1,...,N do

4 sample i, ... it ~ Uniform(1,..., m)

5 sample k ~ Uniform(1,...,m)

6 if |a]x;_1 — bx|< median{|a;x;_1 — b;|: i € i1, ..., it} then
7 Xj = Xj—1 — (akaJ-_l — bk)ak

8 else

9 Xj = Xj_1

10



Convergence Result

Theorem
Let A be a random m x n matrix with rows sampled uniformly over S"~*.
With probability 1 — e~“" the median RK algorithm with T = m satisfies

* |2 c\k * ]2
E(lxe = x| < (1= =) llxo = X7,

provided that the fraction of corrupted entries 3 is smaller than some
positive constant, and that n and m/n are larger than fixed constants.
The corrupted entries and values may be chosen adversarially.
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A Typical Run

— median approach
16} — Random Kaczmarz ||

0.2+

0.0

0 2000 4000 5000 8000 10000
Iterations

e 50000 x 100 Gaussian system with 1000 corruptions.
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e Under reasonable conditions, recovering x* is equivalent to solving

argmin, [|Ax — b||, .

e NP-hard in general, so solve the convex relaxation instead

argmin, ||Ax —b||; .

e In many situations, the solutions to these problems coincide exactly
(Candes, Tao '05; Candes, Rudelson, Tao, Vershynin '05).

e We would like to use SGD with respect to this objective,
X1 = X — msign(a; x, — by)aj,
where i € [m] is sampled uniformly.
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e The optimal step size 7} on iteration k will minimize

* 12
E([xi+1 = x"[|3)-

e 7); is easy to compute analytically:
n; = E(sign(a" xk — b;)(xk — x*) Ta;).

e For this step size

. 2
%12 n * (12
E(][Xk41 — x ||2) = (1 - <Xk —kx*|| > ) [ %k — x ||2
2

e Approximating n* to within a small constant factor is sufficient to
obtain a near-optimal guarantee.
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Median SGD Algorithm

Method 2 Median SGD

1. procedure MEDIANSGD(A,b, xo, N)

2 forj=1,..., Ndo

3: sample /1, ... it ~ Uniform(1,..., m)
4 n; = median{|a] x;_y — b;| : | € [T]}
5 x; = xj_1 — nsign(a; x — b;)a;

return xy
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Does th ntile for median SGD matter?
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e 50000 x 100 Gaussian system, 30 percent corrupted entries

e Note that choosing too small a step size hurts less than choosing
too large a step size (can see from theory)
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Does the size of corruptions matter?
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e 50000 x 100 system, 30 percent corruptions, 30t" percentile SGD
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