Stochastic Gradient Descent Variants for

Corrupted Systems of Linear Equations

Jamie Haddock CISS, March 27, 2020

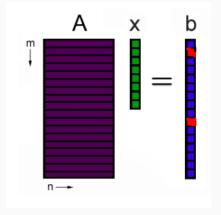
Computational and Applied Mathematics UCLA

Problem

Solve an overdetermined system of equations

 $A\mathbf{x} = \mathbf{b}$

where some entries of b have been arbitrarily corrupted.



• A is an $m \times n$ matrix with m > n and normalized rows.

- A is an $m \times n$ matrix with m > n and normalized rows.
- We call \mathbf{x}^* in \mathbb{R}^n the pseudosolution.

- A is an $m \times n$ matrix with m > n and normalized rows.
- We call \mathbf{x}^* in \mathbb{R}^n the pseudosolution.
- b_C ∈ ℝⁿ has at most βm nonzero entries (β is the fraction of corrupted entries).

- A is an $m \times n$ matrix with m > n and normalized rows.
- We call \mathbf{x}^* in \mathbb{R}^n the pseudosolution.
- b_C ∈ ℝⁿ has at most βm nonzero entries (β is the fraction of corrupted entries).
- Given knowledge of A and the corrupted measurements
 b := Ax* + b_C, we would like an algorithm to recover x*.

- A is an $m \times n$ matrix with m > n and normalized rows.
- We call \mathbf{x}^* in \mathbb{R}^n the pseudosolution.
- b_C ∈ ℝⁿ has at most βm nonzero entries (β is the fraction of corrupted entries).
- Given knowledge of A and the corrupted measurements
 b := Ax* + b_C, we would like an algorithm to recover x*.
- Moreover we would like to recover x* via row-action methods (e.g. Randomized Kazcmarz, or SGD) which use rows of A, a[⊤]_i.

- A is an $m \times n$ matrix with m > n and normalized rows.
- We call \mathbf{x}^* in \mathbb{R}^n the pseudosolution.
- b_C ∈ ℝⁿ has at most βm nonzero entries (β is the fraction of corrupted entries).
- Given knowledge of A and the corrupted measurements
 b := Ax* + b_C, we would like an algorithm to recover x*.
- Moreover we would like to recover x^{*} via row-action methods (e.g. Randomized Kazcmarz, or SGD) which use rows of A, a[⊤]_i.
- For which matrices A can we obtain such a guarantee?

- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)

- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. *Repeat (2)*
 - Geometrically, each index *i* corresponds to a hyperplane in ℝⁿ. RK projects orthogonally onto a randomly chosen hyperplane.

- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. *Repeat (2)*
 - Geometrically, each index *i* corresponds to a hyperplane in ℝⁿ. RK projects orthogonally onto a randomly chosen hyperplane.
- RK has good convergence properties for well-conditioned, consistent systems

- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. *Repeat (2)*
 - Geometrically, each index *i* corresponds to a hyperplane in ℝⁿ. RK projects orthogonally onto a randomly chosen hyperplane.
- RK has good convergence properties for well-conditioned, consistent systems
- ... but handles corruptions very poorly

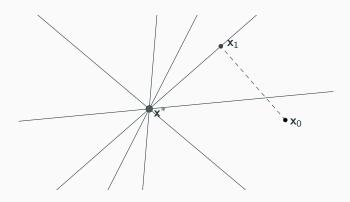
RK

1. Start with initial guess \mathbf{x}_0

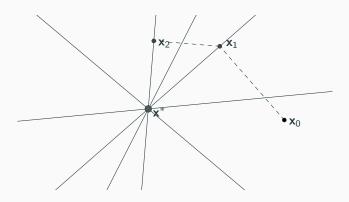
2.
$$\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} - \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$$
 where $i_k \in [m]$ is chosen randomly

3. *Repeat (2)*

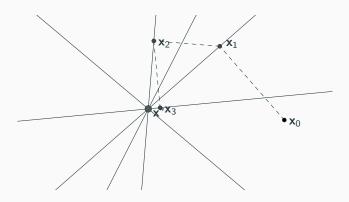
- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)



- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)



- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)



- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)

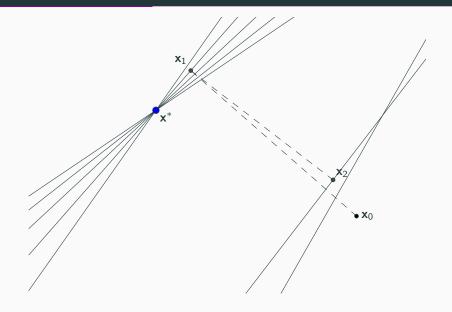
- 1. Start with initial guess \mathbf{x}_0
- 2. $\mathbf{x}_{k+1} = \mathbf{x}_k + (b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_k) \mathbf{a}_{i_k}$ where $i_k \in [m]$ is chosen randomly
- 3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)

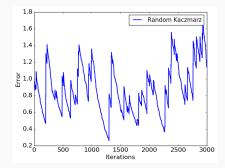
If $A\mathbf{x} = \mathbf{b}$ is consistent and RK is used with $\mathbb{P}[i_k = j] = ||\mathbf{a}_j||^2 / ||A||_F^2$ then iterates converge linearly in expectation with

$$\mathbb{E} \|\mathbf{x}_k - \mathbf{x}^*\|^2 \leq \left(1 - \frac{1}{\|A\|_F^2 \|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

RK with corruptions



RK with corruptions



• 50000 \times 100 Gaussian system with 1000 corruptions.

• Idea: If a sampled hyperplane looks corrupted, don't project!

- Idea: If a sampled hyperplane looks corrupted, don't project!
- Consider the set of distances $\{d_1, \ldots, d_m\}$ from \mathbf{x}_k to the hyperplanes. If d_i is unusually large among these distances, then don't project onto that hyperplane.

- Idea: If a sampled hyperplane looks corrupted, don't project!
- Consider the set of distances $\{d_1, \ldots, d_m\}$ from \mathbf{x}_k to the hyperplanes. If d_i is unusually large among these distances, then don't project onto that hyperplane.
- To quantify: Don't project if d_i is larger than the median of $\{d_1, \ldots, d_m\}$.

- Idea: If a sampled hyperplane looks corrupted, don't project!
- Consider the set of distances $\{d_1, \ldots, d_m\}$ from \mathbf{x}_k to the hyperplanes. If d_i is unusually large among these distances, then don't project onto that hyperplane.
- To quantify: Don't project if d_i is larger than the median of $\{d_1, \ldots, d_m\}$.
- (Nothing too special about the median other quantiles are possible.)

- Idea: If a sampled hyperplane looks corrupted, don't project!
- Consider the set of distances $\{d_1, \ldots, d_m\}$ from \mathbf{x}_k to the hyperplanes. If d_i is unusually large among these distances, then don't project onto that hyperplane.
- To quantify: Don't project if d_i is larger than the median of $\{d_1, \ldots, d_m\}$.
- (Nothing too special about the median other quantiles are possible.)
- For efficiency, it is useful to subsample a collection of rows when computing the median.

Method 1 Median RK

1: procedure MEDRK(
$$A, \mathbf{b}, N, T$$
)
2: $\mathbf{x}_0 = \mathbf{0}$
3: for $j = 1, ..., N$ do
4: sample $i_1, ..., i_T \sim \text{Uniform}(1, ..., m)$
5: sample $k \sim \text{Uniform}(1, ..., m)$
6: if $|\mathbf{a}_k^\top \mathbf{x}_{j-1} - b_k| \leq \text{median}\{|\mathbf{a}_i^\top \mathbf{x}_{j-1} - b_i|: i \in i_1, ..., i_T\}$ then
7: $\mathbf{x}_j = \mathbf{x}_{j-1} - (\mathbf{a}_k^\top \mathbf{x}_{j-1} - b_k)\mathbf{a}_k$
8: else
9: $\mathbf{x}_j = \mathbf{x}_{j-1}$

Let A be a random $m \times n$ matrix with rows sampled uniformly over S^{n-1} . With probability $1 - e^{-c_1 n}$ the median RK algorithm with T = m satisfies

$$\mathbb{E}(\|\mathbf{x}_{k}-\mathbf{x}^{*}\|^{2}) \leq \left(1-\frac{c}{n}\right)^{k} \|\mathbf{x}_{0}-\mathbf{x}^{*}\|^{2},$$

Let A be a random $m \times n$ matrix with rows sampled uniformly over S^{n-1} . With probability $1 - e^{-c_1 n}$ the median RK algorithm with T = m satisfies

$$\mathbb{E}(\|\mathbf{x}_{k}-\mathbf{x}^{*}\|^{2}) \leq \left(1-\frac{c}{n}\right)^{k} \|\mathbf{x}_{0}-\mathbf{x}^{*}\|^{2},$$

provided that the fraction of corrupted entries β is smaller than some positive constant, and that n and m/n are larger than fixed constants. The corrupted entries and values may be chosen adversarially.

• "When A has incoherent rows, the convergence bound for RK holds up to constants."

Let A be a random $m \times n$ matrix with rows sampled uniformly over S^{n-1} . With probability $1 - e^{-c_1 n}$ the median RK algorithm with T = m satisfies

$$\mathbb{E}(\|\mathbf{x}_{k}-\mathbf{x}^{*}\|^{2}) \leq \left(1-\frac{c}{n}\right)^{k} \|\mathbf{x}_{0}-\mathbf{x}^{*}\|^{2},$$

- "When A has incoherent rows, the convergence bound for RK holds up to constants."
- Result essentially holds with subsampling as well.

Let A be a random $m \times n$ matrix with rows sampled uniformly over S^{n-1} . With probability $1 - e^{-c_1 n}$ the median RK algorithm with T = m satisfies

$$\mathbb{E}(\|\mathbf{x}_{k}-\mathbf{x}^{*}\|^{2}) \leq \left(1-\frac{c}{n}\right)^{k}\|\mathbf{x}_{0}-\mathbf{x}^{*}\|^{2},$$

- "When A has incoherent rows, the convergence bound for RK holds up to constants."
- Result essentially holds with subsampling as well.
- Can be generalized to other notions of incoherent rows.

Let A be a random $m \times n$ matrix with rows sampled uniformly over S^{n-1} . With probability $1 - e^{-c_1 n}$ the median RK algorithm with T = m satisfies

$$\mathbb{E}(\|\mathbf{x}_{k}-\mathbf{x}^{*}\|^{2}) \leq \left(1-\frac{c}{n}\right)^{k}\|\mathbf{x}_{0}-\mathbf{x}^{*}\|^{2},$$

- "When A has incoherent rows, the convergence bound for RK holds up to constants."
- Result essentially holds with subsampling as well.
- Can be generalized to other notions of incoherent rows.

Proof Idea

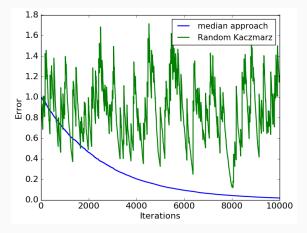
1. Show that median{ $|\mathbf{a}_i^\top \mathbf{x} - b_i| : i \in [m]$ } is well concentrated around $\frac{1}{\sqrt{n}} ||\mathbf{x} - \mathbf{x}^*||_2$ for all $\mathbf{x} \in \mathbb{R}^n$.

- 1. Show that median{ $|\mathbf{a}_i^\top \mathbf{x} b_i| : i \in [m]$ } is well concentrated around $\frac{1}{\sqrt{n}} ||\mathbf{x} \mathbf{x}^*||_2$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. Condition on choosing a good row that the median algorithm projects onto. Show that this projection is fairly helpful in expectation.

- 1. Show that median{ $|\mathbf{a}_i^\top \mathbf{x} b_i| : i \in [m]$ } is well concentrated around $\frac{1}{\sqrt{n}} ||\mathbf{x} \mathbf{x}^*||_2$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. Condition on choosing a good row that the median algorithm projects onto. Show that this projection is fairly helpful in expectation.
- 3. Condition on choosing a corrupted row that the median algorithm projects onto. Show that this projection doesn't hurt too much.

- 1. Show that median{ $|\mathbf{a}_i^\top \mathbf{x} b_i| : i \in [m]$ } is well concentrated around $\frac{1}{\sqrt{n}} ||\mathbf{x} \mathbf{x}^*||_2$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. Condition on choosing a good row that the median algorithm projects onto. Show that this projection is fairly helpful in expectation.
- 3. Condition on choosing a corrupted row that the median algorithm projects onto. Show that this projection doesn't hurt too much.

A Typical Run



• 50000 \times 100 Gaussian system with 1000 corruptions.

 $\bullet\,$ Under reasonable conditions, recovering x^* is equivalent to solving

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_{0}$.

• Under reasonable conditions, recovering \mathbf{x}^* is equivalent to solving

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_{0}$.

• NP-hard in general, so solve the convex relaxation instead

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_1$.

• Under reasonable conditions, recovering \mathbf{x}^* is equivalent to solving

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_{0}$.

• NP-hard in general, so solve the convex relaxation instead

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_1.$

• In many situations, the solutions to these problems coincide exactly (Candes, Tao '05; Candes, Rudelson, Tao, Vershynin '05).

• Under reasonable conditions, recovering \mathbf{x}^* is equivalent to solving

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_{0}$.

• NP-hard in general, so solve the convex relaxation instead

 $\operatorname{argmin}_{\mathbf{x}} \left\| A \mathbf{x} - \mathbf{b} \right\|_1.$

- In many situations, the solutions to these problems coincide exactly (Candes, Tao '05; Candes, Rudelson, Tao, Vershynin '05).
- We would like to use SGD with respect to this objective,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta_k \operatorname{sign}(\mathbf{a}_i^\top \mathbf{x}_k - b_i)\mathbf{a}_i,$$

where $i \in [m]$ is sampled uniformly.

Optimal Step Size

• The optimal step size η_k^* on iteration k will minimize

$$\mathbb{E}(\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2).$$

Optimal Step Size

• The optimal step size η_k^* on iteration k will minimize

$$\mathbb{E}(\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2)$$

- η_k^* is easy to compute analytically: $\eta_k^* = \mathbb{E}(\operatorname{sign}(\mathbf{a}_i^\top \mathbf{x}_k - b_i)(\mathbf{x}_k - \mathbf{x}^*)^\top \mathbf{a}_i).$
- For this step size

$$\mathbb{E}(\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2) = \left(1 - \left(\frac{\eta_k^*}{\|\mathbf{x}_k - \mathbf{x}^*\|_2}\right)^2\right) \|\mathbf{x}_k - \mathbf{x}^*\|_2^2.$$

Optimal Step Size

• The optimal step size η_k^* on iteration k will minimize

$$\mathbb{E}(\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2).$$

- η_k^* is easy to compute analytically: $\eta_k^* = \mathbb{E}(\operatorname{sign}(\mathbf{a}_i^\top \mathbf{x}_k - b_i)(\mathbf{x}_k - \mathbf{x}^*)^\top \mathbf{a}_i).$
- For this step size

$$\mathbb{E}(\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2) = \left(1 - \left(\frac{\eta_k^*}{\|\mathbf{x}_k - \mathbf{x}^*\|_2}\right)^2\right) \|\mathbf{x}_k - \mathbf{x}^*\|_2^2.$$

 Approximating η* to within a small constant factor is sufficient to obtain a near-optimal guarantee.

Method 2 Median SGD

1: procedure MEDIANSGD(A, b, x_0, N)

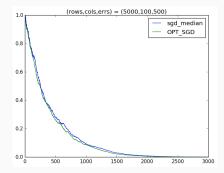
$$2: \qquad \text{for } j=1,\,\ldots,\,N \text{ do}$$

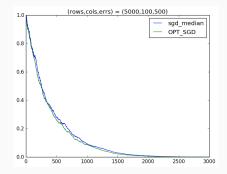
3: sample
$$i_1, \ldots i_T \sim \text{Uniform}(1, \ldots, m)$$

4:
$$\eta_j = \operatorname{median}\{\left|\mathbf{a}_{i_l}^\top \mathbf{x}_{j-1} - b_{i_l}\right| : l \in [T]\}$$

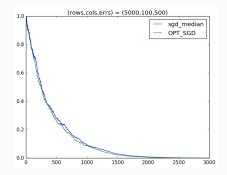
5:
$$\mathbf{x}_j = \mathbf{x}_{j-1} - \eta_j \operatorname{sign}(\mathbf{a}_i^\top \mathbf{x} - b_i) \mathbf{a}_i$$

return x_N

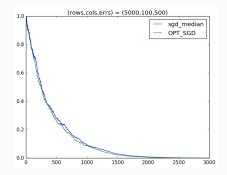




• Smaller 5000 \times 100 system with 500 corruptions



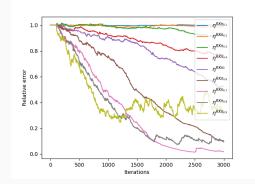
- Smaller 5000 \times 100 system with 500 corruptions
- As long as the number of corruptions isn't too big, the median step size performs nearly optimally in practice



- Smaller 5000 \times 100 system with 500 corruptions
- As long as the number of corruptions isn't too big, the median step size performs nearly optimally in practice

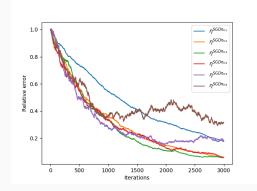
Experiments

Does the quantile for median RK matter?



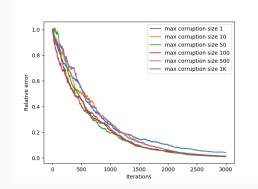
+ 50000 \times 100 Gaussian system, 30 percent corrupted entries

Does the quantile for median SGD matter?



- 50000×100 Gaussian system, 30 percent corrupted entries
- Note that choosing too small a step size hurts less than choosing too large a step size (can see from theory)

Does the size of corruptions matter?



• 50000 imes 100 system, 30 percent corruptions, 30th percentile SGD

• How does the analysis of median RK extend to matrices with correlated rows?

- How does the analysis of median RK extend to matrices with correlated rows?
- The analysis of median RK is qualitatively correct, but gives bad constants. Is there a better analysis that gives constants which match empirical results?

- How does the analysis of median RK extend to matrices with correlated rows?
- The analysis of median RK is qualitatively correct, but gives bad constants. Is there a better analysis that gives constants which match empirical results?
- A greedy variant of median RK works quite well in practice. (If βm corruptions, then project onto hyperplane corresponding to βm + 1 largest residual.) Can we justify this approach theoretically?

- How does the analysis of median RK extend to matrices with correlated rows?
- The analysis of median RK is qualitatively correct, but gives bad constants. Is there a better analysis that gives constants which match empirical results?
- A greedy variant of median RK works quite well in practice. (If βm corruptions, then project onto hyperplane corresponding to βm + 1 largest residual.) Can we justify this approach theoretically?