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Problem

Solve an overdetermined system of equations

Ax = b

where some entries of b have been arbitrarily corrupted.
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Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



Set-up

• A is an m × n matrix with m > n and normalized rows.

• We call x∗ in Rn the pseudosolution.

• bC ∈ Rn has at most βm nonzero entries (β is the fraction of

corrupted entries).

• Given knowledge of A and the corrupted measurements

b := Ax∗ + bC , we would like an algorithm to recover x∗.

• Moreover we would like to recover x∗ via row-action methods (e.g.

Randomized Kazcmarz, or SGD) which use rows of A, a>i .

• For which matrices A can we obtain such a guarantee?

3



First Approach: Random Kaczmarz (RK)

RK

1. Start with initial guess x0

2. xk+1 = xk + (bik − aTik xk)aik where ik ∈ [m] is chosen randomly

3. Repeat (2)

• Geometrically, each index i corresponds to a hyperplane in Rn. RK

projects orthogonally onto a randomly chosen hyperplane.

• RK has good convergence properties for well-conditioned, consistent

systems

• ... but handles corruptions very poorly
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First Approach: Randomized Kaczmarz (RK)

RK

1. Start with initial guess x0

2. xk+1 = xk + (bik − aTik xk)aik where ik ∈ [m] is chosen randomly

3. Repeat (2)

Theorem (Strohmer-Vershynin, 2008)

If Ax = b is consistent and RK is used with P[ik = j ] = ‖aj‖2/‖A‖2F then

iterates converge linearly in expectation with

E‖xk − x∗‖2≤
(

1− 1

‖A‖2F‖A−1‖2

)k

‖x0 − x∗‖2.
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RK with corruptions

x∗

x0

x1

x2
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RK with corruptions

• 50000× 100 Gaussian system with 1000 corruptions.
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Median Thresholding

• Idea: If a sampled hyperplane looks corrupted, don’t project!

• Consider the set of distances {d1, . . . dm} from xk to the

hyperplanes. If di is unusually large among these distances, then

don’t project onto that hyperplane.

• To quantify: Don’t project if di is larger than the median of

{d1, . . . , dm}.
• (Nothing too special about the median – other quantiles are

possible.)

• For efficiency, it is useful to subsample a collection of rows when

computing the median.
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Median RK

Method 1 Median RK

1: procedure MedRK(A,b,N,T )

2: x0 = 0

3: for j = 1, . . . ,N do

4: sample i1, . . . iT ∼ Uniform(1, . . . ,m)

5: sample k ∼ Uniform(1, . . . ,m)

6: if |a>k xj−1 − bk |≤ median{|a>i xj−1 − bi |: i ∈ i1, ..., iT} then
7: xj = xj−1 − (a>k xj−1 − bk)ak
8: else

9: xj = xj−1
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Convergence Result

Theorem

Let A be a random m× n matrix with rows sampled uniformly over Sn−1.

With probability 1− e−c1n the median RK algorithm with T = m satisfies

E(‖xk − x∗‖2) ≤
(

1− c

n

)k
‖x0 − x∗‖2 ,

provided that the fraction of corrupted entries β is smaller than some

positive constant, and that n and m/n are larger than fixed constants.

The corrupted entries and values may be chosen adversarially.

• “When A has incoherent rows, the convergence bound for RK holds

up to constants.”

• Result essentially holds with subsampling as well.

• Can be generalized to other notions of incoherent rows.
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Proof Idea

1. Show that median{
∣∣a>i x− bi

∣∣ : i ∈ [m]} is well concentrated around
1√
n
‖x− x∗‖2 for all x ∈ Rn.

2. Condition on choosing a good row that the median algorithm

projects onto. Show that this projection is fairly helpful in

expectation.

3. Condition on choosing a corrupted row that the median algorithm

projects onto. Show that this projection doesn’t hurt too much.
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A Typical Run

• 50000× 100 Gaussian system with 1000 corruptions.
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Another Approach: l1 SGD

• Under reasonable conditions, recovering x∗ is equivalent to solving

argminx ‖Ax− b‖0 .

• NP-hard in general, so solve the convex relaxation instead

argminx ‖Ax− b‖1 .

• In many situations, the solutions to these problems coincide exactly

(Candes, Tao ’05; Candes, Rudelson, Tao, Vershynin ’05).

• We would like to use SGD with respect to this objective,

xk+1 = xk − ηksign(a>i xk − bi )ai ,

where i ∈ [m] is sampled uniformly.
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Optimal Step Size

• The optimal step size η∗k on iteration k will minimize

E(‖xk+1 − x∗‖22).

• η∗k is easy to compute analytically:

η∗k = E(sign(a>i xk − bi )(xk − x∗)>ai ).

• For this step size

E(‖xk+1 − x∗‖22) =

(
1−

(
η∗k

‖xk − x∗‖2

)2
)
‖xk − x∗‖22 .

• Approximating η∗ to within a small constant factor is sufficient to

obtain a near-optimal guarantee.
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Median SGD Algorithm

Method 2 Median SGD

1: procedure MedianSGD(A,b, x0, N)

2: for j = 1, . . . , N do

3: sample i1, . . . iT ∼ Uniform(1, . . . ,m)

4: ηj = median{
∣∣a>il xj−1 − bil

∣∣ : l ∈ [T ]}
5: xj = xj−1 − ηjsign(a>i x− bi )ai

return xN
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OPT vs. Median Step Sizes

• Smaller 5000× 100 system with 500 corruptions

• As long as the number of corruptions isn’t too big, the median step

size performs nearly optimally in practice
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Experiments



Does the quantile for median RK matter?

• 50000× 100 Gaussian system, 30 percent corrupted entries
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Does the quantile for median SGD matter?

• 50000× 100 Gaussian system, 30 percent corrupted entries

• Note that choosing too small a step size hurts less than choosing

too large a step size (can see from theory)
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Does the size of corruptions matter?

• 50000× 100 system, 30 percent corruptions, 30th percentile SGD
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Future Work/Open Questions

• How does the analysis of median RK extend to matrices with

correlated rows?

• The analysis of median RK is qualitatively correct, but gives bad

constants. Is there a better analysis that gives constants which

match empirical results?

• A greedy variant of median RK works quite well in practice. (If βm

corruptions, then project onto hyperplane corresponding to βm + 1

largest residual.) Can we justify this approach theoretically?
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