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Sparse Recovery (SR) Problem

Reconstruct s-sparse signal x ∈ RN from few
nonadaptive, linear, and noisy measurements,
y = Ax + z , where A ∈ Rm×N is the mea-
surement matrix and z ∈ Rm is noise.

Approach

We solve SR in an asynchronous manner, while
reducing the effects of slow processors on the
estimated signal. We solve

min
x̂∈RN

1
M

M∑
B=1

1
2b‖yB − ABx̂‖22

subject to ‖x̂‖0 ≤ s,
where yB and AB are M non-overlapping sub-
vectors and sub-matrices of y and A. In each
iteration, each processor solves one of the sub-
problems defined by yB and AB and then shares
estimated signal information between processors
via a Bayesian framework.

Bayesian Framework

Hidden variables (H):
1 Tally score, φn ∈ [0, 1], denoting the
probability that coefficient n is in support of
signal x.

2 Reliability score for each processor, ri ∈ [0, 1],
denoting the trustworthiness of the
measurements of processor i .

3 Observation reliability, uni ∈ {0, 1}, which
indicates if support coefficient n in the
estimated signal reported by processor i is
reliable.

Observed variables (D):
1 The support observations, oni indicate if
processor i detects coefficient n in the
support of the estimated signal.

2 The maximum number of iterations
completed by any processor since the last
reporting of processor i , ki .

Generative model:
ri ∼ Beta(β1

i , β
0
i )

uni ∼ Bernoulli(ri)
φn ∼ Beta(a1n, a0n)
oni ∼ uni Bernoulli(φn)

+ (1− uni) Bernoulli(1− φn)
ki ∼ Binomial(Ki, ri)

We use the generative model to infer the
posterior probability distribution of H from D
using Bayes’ rule:

P{H|D} ∝ P{D|H}P{H} = P{D,H}.
where P{D,H} is calculated using the model
above. To avoid intractable computations, we
approximate P(H) by a fully factorized
distribution,
Q{H} =

∏
i
Q{ri|β̂1

i , β̂
0
i }

∏
n,i
Q{uni|τni}∏

n
Q{φn|â1n, â0n}.

Bayesian Asynchronous StoIHT
Require: Number of subproblems, M , and

probability of selection p(B). The pa-
rameters of the reliability score, β̂1

i and
β̂0

i , and the parameters of tally scores, â1n
and â0n, are available to each processor.
Each processor performs the following at
each iteration:

1: randomize: select Bt ∈ [M ] with
probability p(Bt)

2: proxy: b(t) = x (t) + γ
Mp(Bt)A

∗
Bt(yBt −

ABtx (t))
3: identify: Ŝ(t) = supps(b(t)) and

T̃ (t) = supps(φ)
4: estimate: x (t+1) = b(t)

Ŝ(t)∪T̃ (t)

5: repeat
6: update hidden variable parameters, uni ,
β̂1

i , β̂0
i , â1n, and â0n

7: until convergence
8: update φ
9: t = t + 1

Numerical Experiments
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Figure: Comparison of the number of time steps
executed until convergence versus the number of
processors used in different sparse recovery methods,
when (a) all processors are simulated to complete an
iteration in a single time step and (b) half of the
processors are slow and complete an iteration only once
out of every four time steps. Performance of different
multi-processor sparse recovery algorithms implemented
using C++ programming language and OpenMP
platform measured in (c) time per iteration and (d)
convergence time. Here 20% of the processors are slow.

Conclusions
We proposed an asynchronous stochastic
thresholding approach to solving the SR
problem which reduces the effects of slow
processors on the estimated signal. Nu-
merically, we demonstrate that this method
can outperform other synchronous and asyn-
chronous methods for solving SR.
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