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Sparse Recovery (SR) Problem Bayesian Framework Bayesian Asynchronous StolHT
Reconstruct s-sparse signal x € RV from few Hidden variables (%) Generative moldel(:) Require: Number of SL.lbprobIems, M, and
nonadaptive, linear, and noisy measurements, | ri ~ Beta(5;, 57) probability of selection p(B). Tbe pa-
y = Ax + z, where A € R™N s the mea- ® Tally score, ¢, € |0, 1] denoting the u, ~ Bernoulli(r) rameters of the reliability score, 5 and
surement matrix and z € R™ is noise. p_robablllty that coefficient n is in support of by ~ Beta(a,lv, ag) 0 and the parameters of tally scores, 3.

signal x. 0ni ~ Up; Bernoulli(¢),) are available to each processor.
@ Reliability score for each processor, r; € [0, 1], + (1 — u,;) Bernoulli(1 — ¢,) Each processor performs the following at
Approach denoting the trustworthiness of the P R; - each iteration:
_ j |nom|a|(K,-, I’,')
| | measurements of processor /. - randomize: select B, € [M] with
We sc.>|ve SR in an asynchronous manner, while © Observation reliability, u, € {0, 1}, which We use the generative model to infer the probability p(B;)
red.ucmg th.e effects of slow processors on the indicates if support coefficient n in the . bability distribution of X from D proxy: bl = x(t) 4 MPZB) 3 (VB —
estimated signal. We solve i ted o | ted b o posterior probability distribution o rom (0 t
o estimated signal reported by processor i is using Bayes’ rule: Ag x't))
L : iabl | identi 0 (1)
min — S° — AnK reliable. - identify: S = supps(b'”’) and
i W &y 2p Y8~ Al | P{H|D} o P{D|H}P{H} = P{D, H} S
. . Observed variables (D): | | = supps()
subject to || X]|o < s, where P{D, H } is calculated using the model estimate: x(t+1) — pO)
where yz and Ag are M non-overlapping sub- @ The support observations, o, indicate if above. To avoid intractable computations, we repeat ST
- " detects coefficient n in the ' ' |
vectors and sub-matrices of y and A. In each processor/ approximate () by a fully factorized . ' ' .
. . Y support of the estimated signal distributi 0 | uApdaAte hidden variable parameters, uy;
iteration, each processor solves one of the sub- | Istribution, 139 5! and &°
problems defined by yz and Ag and then shares ® [ he maximum number of/tefat/ons Q{H} = HQ{M@}) 5/0} H@{Uni\Tni} .~ until convergence
estimated signal information between processors completed by any processor since the last ! m . ubdate
. . Al A0 P ¢
via a Bayesian framework. reporting of processor /, k;. I;IQ{%“% dpJ- t=t4+1
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